4 research outputs found

    METHOD FOR HIGH AMBIENT TEMPERATURE CUMULATIVE DOSE MEASURING IN ALUMINA-BASED SOLID-STATE IONISING-RADIATION DETECTORS

    Full text link
    FIELD: physics; measurement. SUBSTANCE: invention relates to method of measurement of cumulative dose or dose rate by means of solid-state detectors exposed to ionising radiation at high ambient temperatures. Method for measuring ionising radiation doze at high ambient temperature, including detector heat treatment at 900-950Β°C for 10-15 minutes and measurement of signal of optically stimulated luminescence excited at room temperature, implies additional exposure of heat-treated detector to 5-10 mGy fixed dose radiation at room temperature. Then optically stimulated luminescence signal is measured and its value is used to estimate high-temperature cumulative dose. EFFECT: improved reliability, accuracy and validity of measurements, longer service-life of detectors. 5 dwg.Π˜Π·ΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠ΅ относится ΠΊ способу измСрСния Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½ΠΎΠΉ Π΄ΠΎΠ·Ρ‹ ΠΈΠ»ΠΈ мощности Π΄ΠΎΠ·Ρ‹ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ излучСния Ρ‚Π²Π΅Ρ€Π΄ΠΎΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΎΠ±Π»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΈ высокой Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды. Бпособ измСрСния Π΄ΠΎΠ·Ρ‹ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ излучСния ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰Π΅ΠΉ срСды, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉ Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈ 900-950Β°Π‘ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 10-15 ΠΌΠΈΠ½ΡƒΡ‚ ΠΈ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ сигнала оптичСски стимулированной Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ, Π²ΠΎΠ·Π±ΡƒΠΆΠ΄Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅, характСризуСтся Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΠ±Π»ΡƒΡ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΈ ΠΊΠΎΠΌΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ фиксированной Π΄ΠΎΠ·ΠΎΠΉ 5-10 ΠΌΠ“Ρ€ ΠΎΡ‚ источника ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ излучСния, послС Ρ‡Π΅Π³ΠΎ ΠΈΠ·ΠΌΠ΅Ρ€ΡΡŽΡ‚ сигнал оптичСски стимулированной Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ ΠΈ ΠΏΠΎ Π΅Π³ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ судят ΠΎ Π½Π°ΠΊΠΎΠΏΠ»Π΅Π½Π½ΠΎΠΉ Π΄ΠΎΠ·Π΅ ΠΏΡ€ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. ВСхничСский Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ - ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ надСТности, точности ΠΈ достовСрности ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, ΠΏΡ€ΠΎΠ΄Π»Π΅Π½ΠΈΠ΅ рСсурса Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². 5 ΠΈΠ»

    METHOD OF EXCITING DOSIMETRIC SIGNAL OF OPTICALLY STIMULATED LUMINESCENCE OF IONISING RADIATION DETECTORS BASED ON ALUMINIUM OXIDE

    Full text link
    FIELD: physics. SUBSTANCE: invention can be used to increase reliability and accuracy of a method and measurements taken using said method. The method of exciting a dosimetric signal of optically stimulated luminescence of ionising radiation detectors based on aluminium oxide involves putting a detector into an opaque housing between a optical stimulation source made in form of a light-emitting diode and a dividing optical filter at a distance of 1-2 mm from their surfaces inside the said housing. Stimulation is carried out in 30-50 seconds using radiation from the light-emitting diode with a continuous spectrum in the 450-900 nm range. EFFECT: shorter reading time, high sensitivity, accuracy and reliability of measuring doses, and effective destruction of dosimetric traps in TLD-500K detectors before their use in thermoluminescent dosimetry which replaces thermal treatment of detectors. 8 dwg.Π˜Π·ΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠ΅ относится ΠΊ способам возбуТдСния дозимСтричСского сигнала Π² оптичСски стимулированной Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ Π΄ΠΎΠ·ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использовано для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ надСТности, точности ΠΈ достовСрности ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΡ‹Ρ… с Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. Бпособ возбуТдСния дозимСтричСского сигнала оптичСски стимулированной Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ Π½Π° основС оксида алюминия, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰ΠΈΠΉ ΠΏΠΎΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π° Π² свСтонСпроницаСмый корпус ΠΌΠ΅ΠΆΠ΄Ρƒ располоТСнным Π² Π½Π΅ΠΌ источником оптичСской стимуляции, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹ΠΌ Π² Π²ΠΈΠ΄Π΅ ΡΠ²Π΅Ρ‚ΠΎΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ Π΄ΠΈΠΎΠ΄Π°, ΠΈ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ оптичСским Ρ„ΠΈΠ»ΡŒΡ‚Ρ€ΠΎΠΌ Π½Π° расстоянии 1-2 ΠΌΠΌ ΠΎΡ‚ ΠΈΡ… повСрхностСй, ΠΏΡ€ΠΈ этом ΡΡ‚ΠΈΠΌΡƒΠ»ΡΡ†ΠΈΡŽ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 30-50 с ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΡΠ²Π΅Ρ‚ΠΎΠΈΠ·Π»ΡƒΡ‡Π°ΡŽΡ‰Π΅Π³ΠΎ Π΄ΠΈΠΎΠ΄Π° с Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ΠΌ спСктром Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 450-900 Π½ΠΌ. ВСхничСский Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ - сокращСниС Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ считывания, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, точности, надСТности ΠΈ достовСрности ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ Π΄ΠΎΠ·, Π° Ρ‚Π°ΠΊΠΆΠ΅ эффСктивноС ΠΎΠΏΡƒΡΡ‚ΠΎΡˆΠ΅Π½ΠΈΠ΅ дозимСтричСских Π»ΠΎΠ²ΡƒΡˆΠ΅ΠΊ Π² Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… Π’Π›Π”-500К ΠΏΠ΅Ρ€Π΅Π΄ ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π² Π’Π›Π” Π΄ΠΎΠ·ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, Π·Π°ΠΌΠ΅Π½ΡΡŽΡ‰Π΅Π΅ Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΡƒ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². 8 ΠΈΠ»

    METHOD OF OBTAINING LONG PHOSPHOR PERSISTENCE OF OPTICAL EMITTERS

    Full text link
    SUBSTANCE: optical emitter phosphor based on a nanostructure ceramic based on Beβ‚‚(Si0.8Ge0.2)Oβ‚„ is exposed to radiation in the X-ray energy range or to electrons with energy of 10-300 keV and dose of 10-10Β³ Gy, after which exposure is stopped. In order to regenerate luminescence intensity which drops with time to the required level, material of the phosphor is repeatedly exposed to ionising radiation and short-term optical stimulation is used to excite flashes of afterglow intensity. EFFECT: broader functional capabilities of controlling photodetector devices, high level of radiation and environmental protection.Π˜Π·ΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠ΅ относится ΠΊ способу получСния Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Ρ… ΠΈΠ·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»Π΅ΠΉ оптичСских Ρ„ΠΎΡ‚ΠΎΠ½ΠΎΠ² Π²ΠΈΠ΄ΠΈΠΌΠΎΠ³ΠΎ ΠΈ инфракрасного Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½, основанных Π½Π° Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ послСсвСчСнии Π»ΡŽΠΌΠΈΠ½ΠΎΡ„ΠΎΡ€ΠΎΠ², послС прСкращСния ΠΈΡ… возбуТдСния ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ. Π‘ΡƒΡ‚ΡŒ способа Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π»ΡŽΠΌΠΈΠ½ΠΎΡ„ΠΎΡ€ оптичСского излучатСля Π½Π° основС наноструктурной ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ Π½Π° основС Beβ‚‚(Si0,8Ge0,2)Oβ‚„ ΠΎΠ±Π»ΡƒΡ‡Π°ΡŽΡ‚ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ рСнтгСновского Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° энСргий ΠΈΠ»ΠΈ элСктронами с энСргиСй 10-300 ΠšΡΠ’ ΠΈ Π΄ΠΎΠ·ΠΎΠΉ 10-10Β³ Π“Ρ€, послС Ρ‡Π΅Π³ΠΎ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€Π΅Ρ€Ρ‹Π²Π°ΡŽΡ‚, Π° для Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΡΠ½ΠΈΠΆΠ°ΡŽΡ‰Π΅ΠΉΡΡ со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ интСнсивности Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ†ΠΈΠΈ Π΄ΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΠΎΠ³ΠΎ уровня интСнсивности ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ вСщСства Π»ΡŽΠΌΠΈΠ½ΠΎΡ„ΠΎΡ€Π° ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎ, Π° для возбуТдСния Π²ΡΠΏΡ‹ΡˆΠ΅ΠΊ интСнсивности послСсвСчСния ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ ΠΎΠΏΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΡΡ‚ΠΈΠΌΡƒΠ»ΡΡ†ΠΈΡŽ. ВСхничСский Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ - Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… возмоТностСй контроля Ρ„ΠΎΡ‚ΠΎΠΏΡ€ΠΈΠ΅ΠΌΠ½Ρ‹Ρ… устройств, ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ уровня Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΈ экологичСской бСзопасности

    METHOD TO DETERMINE ELECTRON FLOW DENSITY DISTRIBUTION OVER FLOW SECTION

    Full text link
    SUBSTANCE: proposed method comprises arranging long-persistence phosphor-target on flow path, irradiating said target by electron flow, producing on target surface of luminescent image of electron flow section and determining electron flow distribution over said section. Note here that said long-persistence phosphor-target represents nano-structure Beβ‚‚(Si0,8Ge0,2)Oβ‚„-based ceramics, while said distribution is determined quantitatively from said luminescent image of electron flow section converted from analog form into digital form. EFFECT: expanded performances, development and control of accelerating hardware and high-precision electronics.Π˜Π·ΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠ΅ относится ΠΊ способам измСрСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ излучСния, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΡ… характСристик ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² заряТСнных частиц, ΠΊΠ°ΠΊ ΠΈΡ… пространствСнноС распрСдСлСниС ΠΏΠΎ плотности ΠΈ Π΄ΠΎΠ·Π°ΠΌ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½Ρ‹Ρ… Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠΉ. ВСхничСский Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ - Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ возмоТностСй исслСдований, создания ΠΈ контроля ΡƒΡΠΊΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ, ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΡΠΈΠ»ΡŒΠ½ΠΎΡ‚ΠΎΡ‡Π½ΠΎΠΉ элСктроники. Бпособ опрСдСлСния распрСдСлСния плотности ΠΏΠΎΡ‚ΠΎΠΊΠ° элСктронов ΠΏΠΎ Π΅Π³ΠΎ ΡΠ΅Ρ‡Π΅Π½ΠΈΡŽ ΠΏΡƒΡ‚Π΅ΠΌ размСщСния Π½Π° ΠΏΡƒΡ‚ΠΈ элСктронного ΠΏΠΎΡ‚ΠΎΠΊΠ° Π»ΡŽΠΌΠΈΠ½ΠΎΡ„ΠΎΡ€Π°-мишСни с Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ послСсвСчСниСм Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ ΠΎΠ±Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π΅Π΅ элСктронным ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π½Π° Π΅Π΅ повСрхности Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ изобраТСния сСчСния элСктронного ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎ Π½Π΅ΠΌΡƒ распрСдСлСния плотности ΠΏΠΎΡ‚ΠΎΠΊΠ° элСктронов ΠΏΠΎ Π΅Π³ΠΎ ΡΠ΅Ρ‡Π΅Π½ΠΈΡŽ, ΠΏΡ€ΠΈ этом Π² качСствС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π»ΡŽΠΌΠΈΠ½ΠΎΡ„ΠΎΡ€Π°-мишСни Π²Ρ‹Π±ΠΈΡ€Π°ΡŽΡ‚ Π½Π°Π½ΠΎΡΡ‚Ρ€ΡƒΠΊΡ‚ΡƒΡ€Π½ΡƒΡŽ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΡƒ Π½Π° основС Beβ‚‚(Si0,8Ge0,2)Oβ‚„, a распрСдСлСниС плотности ΠΏΠΎΡ‚ΠΎΠΊΠ° элСктронов ΠΏΠΎ Π΅Π³ΠΎ ΡΠ΅Ρ‡Π΅Π½ΠΈΡŽ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ количСствСнно ΠΏΠΎ Π»ΡŽΠΌΠΈΠ½Π΅ΡΡ†Π΅Π½Ρ‚Π½ΠΎΠΌΡƒ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΡŽ сСчСния элСктронного ΠΏΠΎΡ‚ΠΎΠΊΠ°, ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠΌΡƒ ΠΈΠ· Π°Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Π² Ρ†ΠΈΡ„Ρ€ΠΎΠ²ΡƒΡŽ
    corecore