19 research outputs found

    Using Heterogeneous Stocks for Fine-Mapping Genetically Complex Traits.

    No full text
    In this chapter we will review both the rationale and experimental design for using Heterogeneous Stock (HS) populations for fine-mapping of complex traits in mice and rats. We define an HS as an outbred population derived from an intercross between two or more inbred strains. HS have been used to perform genome-wide association studies (GWAS) for multiple behavioral, physiological, and gene expression traits. GWAS using HS require four key steps, which we review: selection of an appropriate HS population, phenotyping, genotyping, and statistical analysis. We provide advice on the selection of an HS, comment on key issues related to phenotyping, discuss genotyping methods relevant to these populations, and describe statistical genetic analyses that are applicable to genetic analyses that use HS

    Premature responding is associated with approach to a food cue in male and female heterogeneous stock rats

    No full text
    RATIONALE: Disorders of behavioral regulation, including attention deficit hyperactivity disorder (ADHD) and drug addiction, are in part due to poor inhibitory control, attentional deficits, and hyper-responsivity to reward-associated cues. OBJECTIVES: To determine whether these traits are related, we tested genetically variable male and female heterogeneous stock rats in the choice reaction time (CRT) task and Pavlovian conditioned approach (PavCA). Sex differences in the response to methylphenidate during the CRT were also assessed. METHODS: In the CRT task, rats were required to withhold responding until one of two lights indicated whether responses into a left or right port would be reinforced with water. Reaction time on correct trials and premature responses were the operational definitions of attention and response inhibition, respectively. Rats were also pre-treated with oral methylphenidate (0, 2, 4 mg/kg) during the CRT task to determine whether this drug would improve performance. Subsequently, during PavCA, presentation of an illuminated lever predicted the delivery of a food pellet into a food-cup. Lever-directed approach (sign-tracking) and food-cup approach (goal-tracking) were the primary measures, and rats were categorized as “sign-trackers” and “goal-trackers” using an index based on these measures. RESULTS: Sign-trackers made more premature responses than goal-trackers, but showed no differences in reaction time. There were sex differences in both tasks, with females having higher sign-tracking, completing more CRT trials, and making more premature responses after methylphenidate administration. CONCLUSIONS: These results indicate that response inhibition is related to reward-cue responsivity, suggesting that these traits are influenced by common genetic factors
    corecore