4,103 research outputs found

    Cluster simulations of loop models on two-dimensional lattices

    Get PDF
    We develop cluster algorithms for a broad class of loop models on two-dimensional lattices, including several standard O(n) loop models at n \ge 1. We show that our algorithm has little or no critical slowing-down when 1 \le n \le 2. We use this algorithm to investigate the honeycomb-lattice O(n) loop model, for which we determine several new critical exponents, and a square-lattice O(n) loop model, for which we obtain new information on the phase diagram.Comment: LaTex2e, 4 pages; includes 1 table and 2 figures. Totally rewritten in version 2, with new theory and new data. Version 3 as published in PR

    Grassmann Integral Representation for Spanning Hyperforests

    Full text link
    Given a hypergraph G, we introduce a Grassmann algebra over the vertex set, and show that a class of Grassmann integrals permits an expansion in terms of spanning hyperforests. Special cases provide the generating functions for rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All these results are generalizations of Kirchhoff's matrix-tree theorem. Furthermore, we show that the class of integrals describing unrooted spanning (hyper)forests is induced by a theory with an underlying OSP(1|2) supersymmetry.Comment: 50 pages, it uses some latex macros. Accepted for publication on J. Phys.

    Critical speeding-up in a local dynamics for the random-cluster model

    Get PDF
    We study the dynamic critical behavior of the local bond-update (Sweeny) dynamics for the Fortuin-Kasteleyn random-cluster model in dimensions d=2,3, by Monte Carlo simulation. We show that, for a suitable range of q values, the global observable S_2 exhibits "critical speeding-up": it decorrelates well on time scales much less than one sweep, so that the integrated autocorrelation time tends to zero as the critical point is approached. We also show that the dynamic critical exponent z_{exp} is very close (possibly equal) to the rigorous lower bound \alpha/\nu, and quite possibly smaller than the corresponding exponent for the Chayes-Machta-Swendsen-Wang cluster dynamics.Comment: LaTex2e/revtex4, 4 pages, includes 5 figure

    Corrections to scaling in multicomponent polymer solutions

    Full text link
    We calculate the correction-to-scaling exponent ωT\omega_T that characterizes the approach to the scaling limit in multicomponent polymer solutions. A direct Monte Carlo determination of ωT\omega_T in a system of interacting self-avoiding walks gives ωT=0.415(20)\omega_T = 0.415(20). A field-theory analysis based on five- and six-loop perturbative series leads to ωT=0.41(4)\omega_T = 0.41(4). We also verify the renormalization-group predictions for the scaling behavior close to the ideal-mixing point.Comment: 21 page

    Consistent coarse-graining strategy for polymer solutions in the thermal crossover from Good to Theta solvent

    Full text link
    We extend our previously developed coarse-graining strategy for linear polymers with a tunable number n of effective atoms (blobs) per chain [D'Adamo et al., J. Chem. Phys. 137, 4901 (2012)] to polymer systems in thermal crossover between the good-solvent and the Theta regimes. We consider the thermal crossover in the region in which tricritical effects can be neglected, i.e. not too close to the Theta point, for a wide range of chain volume fractions Phi=c/c* (c* is the overlap concentration), up to Phi=30. Scaling crossover functions for global properties of the solution are obtained by Monte-Carlo simulations of the Domb-Joyce model. They provide the input data to develop a minimal coarse-grained model with four blobs per chain. As in the good-solvent case, the coarse-grained model potentials are derived at zero density, thus avoiding the inconsistencies related to the use of state-dependent potentials. We find that the coarse-grained model reproduces the properties of the underlying system up to some reduced density which increases when lowering the temperature towards the Theta state. Close to the lower-temperature crossover boundary, the tetramer model is accurate at least up to Phi<10, while near the good-solvent regime reasonably accurate results are obtained up to Phi<2. The density region in which the coarse-grained model is predictive can be enlarged by developing coarse-grained models with more blobs per chain. We extend the strategy used in the good-solvent case to the crossover regime. This requires a proper treatment of the length rescalings as before, but also a proper temperature redefinition as the number of blobs is increased. The case n=10 is investigated. Comparison with full-monomer results shows that the density region in which accurate predictions can be obtained is significantly wider than that corresponding to the n=4 case.Comment: 21 pages, 14 figure

    Epidemiological patterns of hepatitis B virus (HBV) in highly endemic areas

    Get PDF
    This paper uses meta-analysis of published data and a deterministic mathematical model of hepatitis B virus (HBV) transmission to describe the patterns of HBV infection in high endemicity areas. We describe the association between the prevalence of carriers and a simple measure of the rate of infection, the age at which half the population have been infected (A50), and assess the contribution of horizontal and perinatal transmission to this association. We found that the two main hyper-endemic areas of sub-Saharan Africa and east Asia have similar prevalences of carriers and values of A50, and that there is a negative nonlinear relationship between A50 and the prevalence of carriers in high endemicity areas (Spearman's Rank, P = 0·0086). We quantified the risk of perinatal transmission and the age-dependent rate of infection to allow a comparison between the main hyper-endemic areas. East Asia was found to have higher prevalences of HBeAg positive mothers and a greater risk of perinatal transmission from HBeAg positive mothers than sub-Saharan Africa, though the differences were not statistically significant. However, the two areas have similar magnitudes and age-dependent rates of horizontal transmission. Results of a simple compartmental model suggest that similar rates of horizontal transmission are sufficient to generate the similar patterns between A50 and the prevalences of carriers. Interrupting horizontal transmission by mass immunization is expected to have a significant, nonlinear impact on the rate of acquisition of new carriers

    Dynamic Critical Behavior of the Swendsen-Wang Algorithm: The Two-Dimensional 3-State Potts Model Revisited

    Get PDF
    We have performed a high-precision Monte Carlo study of the dynamic critical behavior of the Swendsen-Wang algorithm for the two-dimensional 3-state Potts model. We find that the Li-Sokal bound (τint,Econst×CH\tau_{int,E} \geq const \times C_H) is almost but not quite sharp. The ratio τint,E/CH\tau_{int,E} / C_H seems to diverge either as a small power (0.08\approx 0.08) or as a logarithm.Comment: 35 pages including 3 figures. Self-unpacking file containing the LaTeX file, the needed macros (epsf.sty, indent.sty, subeqnarray.sty, and eqsection.sty) and the 3 Postscript figures. Revised version fixes a normalization error in \xi (with many thanks to Wolfhard Janke for finding the error!). To be published in J. Stat. Phys. 87, no. 1/2 (April 1997

    Hot and repulsive traffic flow

    Full text link
    We study a message passing model, applicable also to traffic problems. The model is implemented in a discrete lattice, where particles move towards their destination, with fluctuations around the minimal distance path. A repulsive interaction between particles is introduced in order to avoid the appearance of traffic jam. We have studied the parameter space finding regions of fluid traffic, and saturated ones, being separated by abrupt changes. The improvement of the system performance is also explored, by the introduction of a non-constant potential acting on the particles. Finally, we deal with the behavior of the system when temporary failures in the transmission occurs.Comment: 22 pages, uuencoded gzipped postscript file. 11 figures include

    Monte Carlo Procedure for Protein Design

    Full text link
    A new method for sequence optimization in protein models is presented. The approach, which has inherited its basic philosophy from recent work by Deutsch and Kurosky [Phys. Rev. Lett. 76, 323 (1996)] by maximizing conditional probabilities rather than minimizing energy functions, is based upon a novel and very efficient multisequence Monte Carlo scheme. By construction, the method ensures that the designed sequences represent good folders thermodynamically. A bootstrap procedure for the sequence space search is devised making very large chains feasible. The algorithm is successfully explored on the two-dimensional HP model with chain lengths N=16, 18 and 32.Comment: 7 pages LaTeX, 4 Postscript figures; minor change
    corecore