23 research outputs found

    Constitutive Extracellular Polysaccharide (EPS) Production by Specific Isolates of Crocosphaera watsonii

    Get PDF
    Unicellular dinitrogen (N2) fixing cyanobacteria have only recently been identified in the ocean and recognized as important contributors to global N2 fixation. The only cultivated representatives of the open ocean unicellular diazotrophs are multiple isolates of Crocosphaera watsonii. Although constituents of the genus are nearly genetically identical, isolates have been described in two size classes, large ∼5 μm and small ∼3 μm cell diameters. We show here that the large size class constitutively produces substantial amounts of extracellular polysaccharides (EPS) during exponential growth, up to 10 times more than is seen in the small size class, and does so under both N2 fixing and non-N2 fixing conditions. The EPS production exceeds the amount produced by larger phytoplankton such as diatoms and coccolithophores by one to two orders of magnitude, is ∼22% of the total particulate organic C in the culture, and is depleted in N compared to cellular material. The large difference in observed EPS production may be accounted for by consistently higher photochemical efficiency of photosystem II in the large (0.5) vs. small (∼0.35) strains. While it is known that Crocosphaera plays an important role in driving the biological carbon (C) pump through the input of new nitrogen (N) to the open ocean, we hypothesize that this species may also contribute directly to the C cycle through the constitutive production of EPS. Indeed, at two stations in the North Pacific Subtropical Gyre, ∼70% of large Crocosphaera cells observed were embedded in EPS. The evolutionary advantage of releasing such large amounts of fixed C is still unknown, but in regions where Crocosphaera can be abundant (i.e., the warm oligotrophic ocean) this material will likely have important biogeochemical consequences

    Phosphorus Cycling in the Sargasso Sea: Investigation Using the Oxygen Isotopic Composition of Phosphate, Enzyme-Labeled Fluorescence, and Turnover Times

    Get PDF
    Dissolved inorganic phosphorus (DIP) concentrations in surface water of vast areas of the ocean are extremely low (\u3c10 nM) and phosphorus (P) availability could limit primary productivity in these regions. We explore the use of oxygen isotopic signature of dissolved phosphate (δ18OPO4) to investigate biogeochemical cycling of P in the Sargasso Sea, Atlantic Ocean. Additional techniques for studying P dynamics including 33P-based DIP turnover time estimates and percent of cells expressing alkaline phosphatase (AP) activity as measured by enzyme-labeling fluorescence are also used. In surface waters, δ18OPO4 values were lower than equilibrium by 3–6%, indicative of dissolved organic phosphorous (DOP) remineralization by extracellular enzymes. An isotope mass balance model using a variety of possible combinations of enzymatic pathways and substrates indicates that DOP remineralization in the euphotic zone can account for a large proportion on P utilized by phytoplankton (as much as 82%). Relatively short DIP turnover times (4–8 h) and high expression of AP (38–77% of the cells labeled) are consistent with extensive DOP utilization and low DIP availability in the euphotic zone. In deep water where DOP utilization rates are lower, δ18OPO4 values approach isotopic equilibrium and DIP turnover times are longer. Our data suggests that in the euphotic zone of the Sargasso Sea, DOP may be appreciably remineralized and utilized by phytoplankton and bacteria to supplement cellular requirements. A substantial fraction of photosynthesis in this region is supported by DOP uptake

    Nitrogen fixation in the South Atlantic Gyre and the Benguela Upwelling System

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 38 (2011): L16608, doi:10.1029/2011GL048315.Dinitrogen (N2) fixation is recognized as an important input of new nitrogen (N) to the open ocean gyres, contributing to the export of organic matter from surface waters. However, very little N2-fixation research has focused on the South Atlantic Gyre, where dust deposition of iron (Fe), an important micronutrient for diazotrophs, is seasonally low. Recent modeling efforts suggest that N2-fixation may in fact be closely coupled to, and greatest in, areas of denitrification, as opposed to the oceanic gyres. One of these areas, the Benguela Upwelling System, lies to the east of the South Atlantic Gyre. In this study we show that N2-fixation in surface waters across the South Atlantic Gyre was low overall (<1.5 nmol N l−1 d−1) with highest rates seen in or near the Benguela Upwelling System (up to ∼8 nmol N l−1 d−1). Surface water dissolved Fe (dFe) concentrations were very low in the gyre (∼0.3 nM or lower), while soluble reactive phosphorus (SRP) concentrations were relatively high (∼0.15 μM). N2-fixation rates across the entire sampling area were significantly positively correlated to dFe, but also to SRP and NO3−. Thus, high NO3− concentrations did not exclude N2-fixation in the upwelling region, which provides evidence that N2-fixation may be occurring in previously unrecognized waters, specifically near denitrification zones. However the gene encoding for a nitrogenase component (nifH) was not detected from known diazotrophs at some stations in or near the upwelling where N2-fixation was greatest, suggesting the presence of unknown diazotrophs in these waters.Funding for this research was provided by NSF grants OCE‐0452883 (to E.A.W. and M.A.S.), OCE‐0825922 (to E.A.W.), and The Gordon and Betty Moore Foundation (JPZ)

    Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils

    Get PDF
    Carbon-fixation is a critical process in severely oligotrophic Antarctic Dry Valley (DV) soils and may represent the major source of carbon in these arid environments. However, rates of C-fixation in DVs are currently unknown and the microorganisms responsible for these activities unidentified. In this study, C-fixation rates measured in the bulk arid soils (<5% moisture) ranged from below detection limits to ∼12 nmol C/cc/h. Rates in ephemerally wet soils ranged from ∼20 to 750 nmol C/cc/h, equating to turnover rates of ∼7–140 days, with lower rates in stream-associated soils as compared to lake-associated soils. Sequencing of the large subunit of RuBisCO (cbbL) in these soils identified green-type sequences dominated by the 1B cyanobacterial phylotype in both arid and wet soils including the RNA fraction of the wet soil. Red-type cbbL genes were dominated by 1C actinobacterial phylotypes in arid soils, with wetted soils containing nearly equal proportions of 1C (actinobacterial and proteobacterial signatures) and 1D (algal) phylotypes. Complementary 16S rRNA and 18S rRNA gene sequencing also revealed distinct differences in community structure between biotopes. This study is the first of its kind to examine C-fixation rates in DV soils and the microorganisms potentially responsible for these activities

    The distribution and relative ecological roles of autotrophic and heterotrophic diazotrophs in the McMurdo Dry Valleys, Antarctica

    Get PDF
    The McMurdo Dry Valleys (MDV) in Antarctica harbor a diverse assemblage of mat-forming diazotrophic cyanobacteria that play a key role in nitrogen cycling. Prior research showed that heterotrophic diazotrophs also make a substantial contribution to nitrogen fixation in MDV. The goals of this study were to survey autotrophic and heterotrophic diazotrophs across the MDV to investigate factors that regulate the distribution and relative ecological roles of each group. Results indicated that diazotrophs were present only in samples with mats, suggesting a metabolic coupling between autotrophic and heterotrophic diazotrophs. Analysis of 16S rRNA and nifH gene sequences also showed that diazotrophs were significantly correlated to the broader bacterial community, while co-occurrence network analysis revealed potential interspecific interactions. Consistent with previous studies, heterotrophic diazotrophs in MDV were diverse, but largely limited to lakes and their outlet streams, or other environments protected from desiccation. Despite the limited distribution, heterotrophic diazotrophs may make a substantial contribution to the nitrogen budget of MDV due to larger surface area and longer residence times of lakes. This work contributes to our understanding of key drivers of bacterial

    Rapid microbial dynamics in response to an induced wetting event in Antarctic Dry Valley Soils

    Get PDF
    The cold deserts of the McMurdo Dry Valleys (MDV), Antarctica, host a high level of microbial diversity. Microbial composition and biomass in arid vs. ephemerally wetted regions are distinctly different, with wetted communities representing hot spots of microbial activity that are important zones for biogeochemical cycling. While climatic change is likely to cause wetting in areas not historically subject to wetting events, the responses of microorganisms inhabiting arid soils to water addition is unknown. The purpose of this study was to observe how an associated, yet non-wetted microbial community responds to an extended addition of water. Water from a stream was diverted to an adjacent area of arid soil with changes in microbial composition and activities monitored via molecular and biochemical methods over 7 weeks. The frequency of genetic signatures related to both prokaryotic and eukaryotic organisms adapted to MDV aquatic conditions increased during the limited 7 week period, indicating that the soil community was transitioning into a typical “high-productivity” MDV community. This work is consistent with current predictions that MDV microbial communities in arid regions are highly sensitive to climate change, and further supports the notion that changes in community structure and associated biogeochemical cycling may occur much more rapidly than predicted

    Synechococcus counts determined by epifluorescent microscopy from samples collected on R/V Atlantis cruise AT15-61 in the Eastern Tropical South Pacific in 2010 (Syne_ETSP project)

    No full text
    Dataset: Synechococcus_ETSPSynechococcus counts determined by epifluorescent microscopy from samples collected on R/V Atlantis cruise AT15-61 in the Eastern Tropical South Pacific in 2010. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3765NSF Division of Ocean Sciences (NSF OCE) OCE-0825922, NSF Division of Ocean Sciences (NSF OCE) OCE-094331

    Plasticity of N:P ratios in laboratory and field populations of Trichodesmium spp.

    Get PDF
    © 2006 Inter-Research.DOI:10.3354/ame042243We followed changes in N:P ratios in batch cultures of the planktonic marine cyanobacterium Trichodesmium (IMS 101) grown in 2 different media and in field populations from 4 different oceanic regions. Cultures grown on low P media showed a rapid rise in N:P ratio upon depletion of phosphate. Ratios exceeding 125 were reached in 1 experiment before attaining stationary phase. A transect across the North Atlantic Ocean along 32°N showed a monotonic decrease in the N:P ratio of field collected colonies, dropping from about 60:1 on the western side of the basin to about 30:1 on the eastern side. A second cruise sampled colonies and surface slicks in waters along the north coast of Australia, where ratios of N:P were generally lower than in the North Atlantic, ranging from 11:1 to 47:1 with an average of 22:1. A comparison of rising and sinking colonies collected at 8 stations in the Gulf of Mexico shows a higher mean N:P ratio among sinking colonies than floating colonies. Overall, the average N:P in the Gulf of Mexico was about 68:1. N:P ratios of Trichodesmium around the Hawaiian Islands were very consistent between 2 consecutive years of sampling, with an average colony N:P for both years of about 38:1. Our research demonstrates high variability in the cellular N:P in Trichodesmium both in the laboratory and in the field. Trichodesmium N:P ratio may provide an index to the relative severity of P limitation in these diazotrophs. Geochemical and ecological modeling efforts which rely on using the N:P ratio of diazotrophs in deriving nitrogen fixation rates should account for the variability of these ratios in situ
    corecore