12 research outputs found

    Applications of discrete synthetic macromolecules in life and materials science : recent and future trends

    Get PDF
    In the last decade, the field of sequence-defined polymers and related ultraprecise, monodisperse synthetic macromolecules has grown exponentially. In the early stage, mainly articles or reviews dedicated to the development of synthetic routes toward their preparation have been published. Nowadays, those synthetic methodologies, combined with the elucidation of the structure-property relationships, allow envisioning many promising applications. Consequently, in the past 3 years, application-oriented papers based on discrete synthetic macromolecules emerged. Hence, material science applications such as macromolecular data storage and encryption, self-assembly of discrete structures and foldamers have been the object of many fascinating studies. Moreover, in the area of life sciences, such structures have also been the focus of numerous research studies. Here, it is aimed to highlight these recent applications and to give the reader a critical overview of the future trends in this area of research

    Stereocontrolled, multi-functional sequence-defined oligomers through automated synthesis

    Get PDF
    In contrast to biomacromolecules, synthetic polymers generally lack a defined monomer sequence, therefore one of the challenges of polymer chemists these days is gaining more control over the primary structure of synthetic polymers and oligomers. In this work, stereocontrolled sequence-defined oligomers were synthesised using a thiolactone-based platform. Step-wise elongation of the oligomer occursviaring-opening of the thiolactone, resulting in the formation of stereocenters along the backbone. These initial studies indicate remarkable differences in the strength of non-covalent interactions in isotactic and atactic oligomers. Different side-chain moieties were introduced using alkyl halide building blocks and the synthetic protocol was succesfully optimised and automated. Furthermore, the possible post-synthesis modification of the oligomers was demonstrated using 'click' chemistry

    Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations

    Get PDF
    The HEK293 human cell lineage is widely used in cell biology and biotechnology. Here we use whole-genome resequencing of six 293 cell lines to study the dynamics of this aneuploid genome in response to the manipulations used to generate common 293 cell derivatives, such as transformation and stable clone generation (293T); suspension growth adaptation (293S); and cytotoxic lectin selection (293SG). Remarkably, we observe that copy number alteration detection could identify the genomic region that enabled cell survival under selective conditions (i.c. ricin selection). Furthermore, we present methods to detect human/vector genome breakpoints and a user-friendly visualization tool for the 293 genome data. We also establish that the genome structure composition is in steady state for most of these cell lines when standard cell culturing conditions are used. This resource enables novel and more informed studies with 293 cells, and we will distribute the sequenced cell lines to this effect

    Reading information stored in synthetic macromolecules

    No full text

    Sequencing of uniform multifunctional oligoesters via random chain cleavages

    No full text
    Sequence-defined polymers have been the object of many fascinating studies that focus on their implementation in both material and life science applications. In parallel, iterative synthetic methodologies have become more efficient, whereas the structure elucidation of these molecules is generally dependent on MS/MS analysis. Here, we report an alternative, simple strategy for the determination of the monomer order of uniform oligo(thioether ester)s. This approach, which relies on random cleavages of ester units within the macromolecular backbone via a basic treatment, enables the swift characterization of these macromolecules without the need for MS/MS. Consequently, this method can be used for decoding any information stored within the primary structure of oligoesters by means of ESI- or LC-MS. Finally, we speculate that a range of structurally diverse backbones could be susceptible towards this approach, which could promptly expand the library of chemically sequenceable macromolecules

    Discrete, self-immolative N-substituted oligourethanes and their use as molecular tags

    No full text
    Here, we first report a straightforward solution-phase approach for the synthesis of N-substituted oligourethanes. Using this protocol, discrete oligomers could be rapidly obtained on a multigram scale by solely utilizing liquid/liquid extractions, avoiding the need for excessive purification steps or the requirement for a solid or soluble support. In addition, structure elucidation of the obtained oligourethanes with the help of ESI- or LC-MS analysis was achieved by relying on the controlled depolymerization of these oligomers. Essential to this process is the presence of the terminal hydroxy moiety that can participate in an intramolecular cyclization. This intramolecular reaction was studied with a series of model compounds in order to determine the parameters that can be used to either enhance or inhibit its rate. In a last step of the study, the applicability of these chemically sequenceable macromolecules as molecular tags was demonstrated by their incorporation in a crosslinked polyurethane material. This study, hence, opens new avenues for the utilization of sequence-defined macromolecules for anti-counterfeiting purposes

    Rewritable macromolecular data storage with automated read-out

    No full text
    Rewriting data stored on synthetic macromolecules is an interesting feature, even though it is considered as being quite challenging within the area of digital macromolecules. In this context, we initially studied a strategy for modifying the position tag of sequence-encoded macromolecules in a reversible manner. The efficiency of this method, which relies on the orthogonal cleavage of a thioester moiety via aminolysis, was demonstrated by modifying parts of an exemplary sentence. Simultaneously, a novel algorithm was developed to ease the read-out of macromolecular information by means of MS/MS techniques. This program, Oligoreader, can identify potential information-containing macromolecules from a series of MS1 spectra, analyze the corresponding MS2 spectra, and finally decode the data. Consequently, the algorithm simplifies the entire read-out process by avoiding any interference from the operator, which increases the potential for blind sequencing of uniform macromolecules

    Reading Information Stored in Synthetic Macromolecules

    No full text
    The storage of information in synthetic (macro)molecules provides an attractive alternative for current archival storage media, and the advancements made within this area have prompted the investigation of such molecules for numerous other applications (e.g., anti-counterfeiting tags, steganography). While different strategies have been described for storing information at the molecular level, this Perspective aims to provide a critical overview of the most prominent approaches that can be utilized for retrieving the encoded information. The major part will focus on the sequence determination of synthetic macromolecules, wherein information is stored by the precise arrangement of constituting monomers, with an emphasis on chemically aided strategies, (tandem) mass spectrometry, and nanopore sensing. In addition, recent progress in utilizing (mixtures of) small molecules for information storage will be discussed. Finally, the closing remarks aim to highlight which strategy we believe is the most suitable for a series of specific applications, and will also touch upon the future research avenues that can be pursued for reading (macro)molecular information

    Sequence-Encoded Macromolecules with Increased Data Storage Capacity through a Thiol-Epoxy Reaction

    No full text
    Sequence-encoded oligo(thioether urethane)s with two different coding monomers per backbone unit were prepared via a solid phase, two-step iterative protocol based on thiolactone chemistry. The first step of the synthetic cycle consists of the thiolactone ring opening with a primary amine, whereby the in situ released thiol is immediately reacted with an epoxide. In the second step, the thiolactone group is reinstalled to initiate the next cycle. This strategy allows to introduce two different coding monomers per synthetic cycle, rendering the resulting macromolecules especially attractive in the area of (macro)molecular data storage because of their increased data storage capacity. Subsequently, the efficiency of the herein reported synthesis route and the applicability of the dual-encoded sequence-defined macromolecules as a potential data storage platform have been demonstrated by unraveling the exact monomer order using tandem mass spectrometry techniques
    corecore