3 research outputs found

    Relations of Water-quality Constituent Concentrations to Surrogate Measurements in the Lower Platte River Corridor, Nebraska, 2007 through 2011

    Get PDF
    The lower Platte River, Nebraska, provides drinking water, irrigation water, and in-stream flows for recreation, wildlife habitat, and vital habitats for several threatened and endangered species. The United States Geological Survey (USGS), in cooperation with the Lower Platte River Corridor Alliance (LPRCA) developed site-specific regression models for water-quality constituents at four sites (Shell Creek near Columbus, Nebraska [USGS site 06795500]; Elkhorn River at Waterloo, Nebraska [USGS site 06800500]; Salt Creek near Ashland, Nebraska [USGS site 06805000]; and Platte River at Louisville, Nebraska [USGS site 06805500]) in the lower Platte River corridor. The models were developed by relating continuously monitored water-quality properties (surrogate measurements) to discrete water-quality samples. These models enable existing web-based software to provide near-real-time estimates of stream-specific constituent concentrations to support natural resources management decisions.Since 2007, USGS, in cooperation with the LPRCA, has continuously monitored four water-quality properties seasonally within the lower Platte River corridor: specific conductance, water temperature, dissolved oxygen, and turbidity. During 2007 through 2011, the USGS and the Nebraska Department of Environmental Quality collected and analyzed discrete water-quality samples for nutrients, major ions, pesticides, suspended sediment, and bacteria. These datasets were used to develop the regression models. This report documents the collection of these various water-quality datasets and the development of the site-specific regression models.Regression models were developed for all four monitored sites. Constituent models for Shell Creek included nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, acetochlor, suspended sediment, and Escherichia coli (E. coli) bacteria. Regression models that were developed for the Elkhorn River included nitrate plus nitrite, total Kjeldahl nitrogen, total phosphorus, orthophosphate, chloride, atrazine, acetochlor, suspended sediment, and E. coli. Models developed for Salt Creek included nitrate plus nitrite, total Kjeldahl nitrogen, suspended sediment, and E. coli. Lastly, models developed for the Platte River site included total Kjeldahl nitrogen, total phosphorus, sodium, metolachlor, atrazine, acetochlor, suspended sediment, and E. coli

    Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    No full text
    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data. For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated. The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations

    Stream Bank Stability in Eastern Nebraska

    Get PDF
    Dredged and straightened channels in eastern Nebraska have experienced degradation leading to channel widening by bank failure. Degradation has progressed headward and affected the drainage systems upstream from the modified reaches. This report describes a study that was undertaken to analyze bank stability at selected sites in eastern Nebraska and develop a simplified method for estimating the stability of banks at future study sites. Bank cross sections along straight reaches of channel and geotechnical data were collected at approximately 150 sites in 26 counties of eastern Nebraska. The sites were categorized into three groups based on mapped soil permeability. With increasing permeability of the soil groups, the median cohesion values decreased and the median friction angles increased. Three analytical methods were used to determine if banks were stable (should not fail even when saturated), at risk (should not fail unless saturated), or unstable (should have already failed). The Culmann and Agricultural Research Service methods were based on the Coulomb equation and planar failure; an indirect method was developed that was based on Bishop’s simplified method of slices and rotational failure. The maximum angle from horizontal at which the bank would be stable for the given soil and bank height conditions also was computed with the indirect method. Because of few soil shear-strength data, all analyses were based on the assumption of homogeneous banks, which was later shown to be atypical, at least for some banks
    corecore