80 research outputs found
High Impedance Detector Arrays for Magnetic Resonance
Resonant inductive coupling is commonly seen as an undesired fundamental
phenomenon emergent in densely packed resonant structures, such as nuclear
magnetic resonance phased array detectors. The need to mitigate coupling
imposes rigid constraints on the detector design, impeding performance and
limiting the scope of magnetic resonance experiments. Here we introduce a high
impedance detector design, which can cloak itself from electrodynamic
interactions with neighboring elements. We verify experimentally that the high
impedance detectors do not suffer from signal-to-noise degradation mechanisms
observed with traditional low impedance elements. Using this new-found
robustness, we demonstrate an adaptive wearable detector array for magnetic
resonance imaging of the hand. The unique properties of the detector glove
reveal new pathways to study the biomechanics of soft tissues, and exemplify
the enabling potential of high-impedance detectors for a wide range of
demanding applications that are not well suited to traditional coil designs.Comment: 16 pages, 12 figures, videos available upon reques
Optimized Quantification of Spin Relaxation Times in the Hybrid State
Purpose: The analysis of optimized spin ensemble trajectories for relaxometry
in the hybrid state.
Methods: First, we constructed visual representations to elucidate the
differential equation that governs spin dynamics in hybrid state. Subsequently,
numerical optimizations were performed to find spin ensemble trajectories that
minimize the Cram\'er-Rao bound for -encoding, -encoding, and their
weighted sum, respectively, followed by a comparison of the Cram\'er-Rao bounds
obtained with our optimized spin-trajectories, as well as Look-Locker and
multi-spin-echo methods. Finally, we experimentally tested our optimized spin
trajectories with in vivo scans of the human brain.
Results: After a nonrecurring inversion segment on the southern hemisphere of
the Bloch sphere, all optimized spin trajectories pursue repetitive loops on
the northern half of the sphere in which the beginning of the first and the end
of the last loop deviate from the others. The numerical results obtained in
this work align well with intuitive insights gleaned directly from the
governing equation. Our results suggest that hybrid-state sequences outperform
traditional methods. Moreover, hybrid-state sequences that balance - and
-encoding still result in near optimal signal-to-noise efficiency. Thus,
the second parameter can be encoded at virtually no extra cost.
Conclusion: We provide insights regarding the optimal encoding processes of
spin relaxation times in order to guide the design of robust and efficient
pulse sequences. We find that joint acquisitions of and in the
hybrid state are substantially more efficient than sequential encoding
techniques.Comment: 10 pages, 5 figure
Hybrid-State Free Precession in Nuclear Magnetic Resonance
The dynamics of large spin-1/2 ensembles in the presence of a varying
magnetic field are commonly described by the Bloch equation. Most magnetic
field variations result in unintuitive spin dynamics, which are sensitive to
small deviations in the driving field. Although simplistic field variations can
produce robust dynamics, the captured information content is impoverished.
Here, we identify adiabaticity conditions that span a rich experiment design
space with tractable dynamics. These adiabaticity conditions trap the spin
dynamics in a one-dimensional subspace. Namely, the dynamics is captured by the
absolute value of the magnetization, which is in a transient state, while its
direction adiabatically follows the steady state. We define the hybrid state as
the co-existence of these two states and identify the polar angle as the
effective driving force of the spin dynamics. As an example, we optimize this
drive for robust and efficient quantification of spin relaxation times and
utilize it for magnetic resonance imaging of the human brain
Generalized Bloch model: a theory for pulsed magnetization transfer
Purpose: The paper introduces a classical model to describe the dynamics of
large spin-1/2 ensembles associated with nuclei bound in large molecule
structures, commonly referred to as the semi-solid spin pool, and their
magnetization transfer (MT) to spins of nuclei in
Theory and Methods: Like quantum-mechanical descriptions of spin dynamics and
like the original Bloch equations, but unlike existing MT models, the proposed
model is based on the algebra of angular momentum in the sense that it
explicitly models the rotations induced by radio-frequency (RF) pulses. It
generalizes the original Bloch model to non-exponential decays, which are,
e.g., observed for semi-solid spin pools. The combination of rotations with
non-exponential decays is facilitated by describing the latter as Green's
functions, comprised in an integro-differential equation.
Results: Our model describes the data of an inversion-recovery
magnetization-transfer experiment with varying durations of the inversion pulse
substantially better than established models. We made this observation for all
measured data, but in particular for pulse durations small than 300s.
Furthermore, we provide a linear approximation of the generalized Bloch model
that reduces the simulation time by approximately a factor 15,000, enabling
simulation of the spin dynamics caused by a rectangular RF-pulse in roughly
2s.
Conclusion: The proposed theory unifies the original Bloch model, Henkelman's
steady-state theory for magnetization transfer, and the commonly assumed
rotation induced by hard pulses (i.e., strong and infinitesimally short
applications of RF fields) and describes experimental data better than previous
models
A simple noniterative principal component technique for rapid noise reduction in parallel MR images
The utilization of parallel imaging permits increased MR acquisition speed and efficiency; however, parallel MRI usually leads to a deterioration in the signal-to-noise ratio when compared with otherwise equivalent unaccelerated acquisitions. At high accelerations, the parallel image reconstruction matrix tends to become dominated by one principal component. This has been utilized to enable substantial reductions in g-factor-related noise. A previously published technique achieved noise reductions via a computationally intensive search for multiples of the dominant singular vector which, when subtracted from the image, minimized joint entropy between the accelerated image and a reference image. We describe a simple algorithm that can accomplish similar results without a time-consuming search. Significant reductions in g-factor-related noise were achieved using this new algorithm with in vivo acquisitions at 1.5T with an eight-element array. © 2011 John Wiley & Sons, Ltd
- …