7 research outputs found

    Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals.

    Get PDF
    BACKGROUND: Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. METHODS: HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. RESULTS: All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. CONCLUSIONS: Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted

    Clinical and Demographic Factors Associated with COVID-19, Severe COVID-19, and SARS-CoV-2 Infection in Adults: A Secondary Cross-Protocol Analysis of 4 Randomized Clinical Trials

    Get PDF
    Importance: Current data identifying COVID-19 risk factors lack standardized outcomes and insufficiently control for confounders. Objective: To identify risk factors associated with COVID-19, severe COVID-19, and SARS-CoV-2 infection. Design, Setting, and Participants: This secondary cross-protocol analysis included 4 multicenter, international, randomized, blinded, placebo-controlled, COVID-19 vaccine efficacy trials with harmonized protocols established by the COVID-19 Prevention Network. Individual-level data from participants randomized to receive placebo within each trial were combined and analyzed. Enrollment began July 2020 and the last data cutoff was in July 2021. Participants included adults in stable health, at risk for SARS-CoV-2, and assigned to the placebo group within each vaccine trial. Data were analyzed from April 2022 to February 2023. Exposures: Comorbid conditions, demographic factors, and SARS-CoV-2 exposure risk at the time of enrollment. Main Outcomes and Measures: Coprimary outcomes were COVID-19 and severe COVID-19. Multivariate Cox proportional regression models estimated adjusted hazard ratios (aHRs) and 95% CIs for baseline covariates, accounting for trial, region, and calendar time. Secondary outcomes included severe COVID-19 among people with COVID-19, subclinical SARS-CoV-2 infection, and SARS-CoV-2 infection. Results: A total of 57692 participants (median [range] age, 51 [18-95] years; 11720 participants [20.3%] aged ≥65 years; 31058 participants [53.8%] assigned male at birth) were included. The analysis population included 3270 American Indian or Alaska Native participants (5.7%), 7849 Black or African American participants (13.6%), 17678 Hispanic or Latino participants (30.6%), and 40745 White participants (70.6%). Annualized incidence was 13.9% (95% CI, 13.3%-14.4%) for COVID-19 and 2.0% (95% CI, 1.8%-2.2%) for severe COVID-19. Factors associated with increased rates of COVID-19 included workplace exposure (high vs low: aHR, 1.35 [95% CI, 1.16-1.58]; medium vs low: aHR, 1.41 [95% CI, 1.21-1.65]; P <.001) and living condition risk (very high vs low risk: aHR, 1.41 [95% CI, 1.21-1.66]; medium vs low risk: aHR, 1.19 [95% CI, 1.08-1.32]; P <.001). Factors associated with decreased rates of COVID-19 included previous SARS-CoV-2 infection (aHR, 0.13 [95% CI, 0.09-0.19]; P <.001), age 65 years or older (aHR vs age <65 years, 0.57 [95% CI, 0.50-0.64]; P <.001) and Black or African American race (aHR vs White race, 0.78 [95% CI, 0.67-0.91]; P =.002). Factors associated with increased rates of severe COVID-19 included race (American Indian or Alaska Native vs White: aHR, 2.61 [95% CI, 1.85-3.69]; multiracial vs White: aHR, 2.19 [95% CI, 1.50-3.20]; P <.001), diabetes (aHR, 1.54 [95% CI, 1.14-2.08]; P =.005) and at least 2 comorbidities (aHR vs none, 1.39 [95% CI, 1.09-1.76]; P =.008). In analyses restricted to participants who contracted COVID-19, increased severe COVID-19 rates were associated with age 65 years or older (aHR vs <65 years, 1.75 [95% CI, 1.32-2.31]; P <.001), race (American Indian or Alaska Native vs White: aHR, 1.98 [95% CI, 1.38-2.83]; Black or African American vs White: aHR, 1.49 [95% CI, 1.03-2.14]; multiracial: aHR, 1.81 [95% CI, 1.21-2.69]; overall P =.001), body mass index (aHR per 1-unit increase, 1.03 [95% CI, 1.01-1.04]; P =.001), and diabetes (aHR, 1.85 [95% CI, 1.37-2.49]; P <.001). Previous SARS-CoV-2 infection was associated with decreased severe COVID-19 rates (aHR, 0.04 [95% CI, 0.01-0.14]; P <.001). Conclusions and Relevance: In this secondary cross-protocol analysis of 4 randomized clinical trials, exposure and demographic factors had the strongest associations with outcomes; results could inform mitigation strategies for SARS-CoV-2 and viruses with comparable epidemiological characteristics

    Neutralization titer biomarker for antibody-mediated prevention of HIV-1 acquisition

    Get PDF
    The Antibody Mediated Prevention trials showed that the broadly neutralizing antibody (bnAb) VRC01 prevented acquisition of human immunodeficiency virus-1 (HIV-1) sensitive to VRC01. Using AMP trial data, here we show that the predicted serum neutralization 80% inhibitory dilution titer (PT80) biomarker—which quantifies the neutralization potency of antibodies in an individual’s serum against an HIV-1 isolate—can be used to predict HIV-1 prevention efficacy. Similar to the results of nonhuman primate studies, an average PT80 of 200 (meaning a bnAb concentration 200-fold higher than that required to reduce infection by 80% in vitro) against a population of probable exposing viruses was estimated to be required for 90% prevention efficacy against acquisition of these viruses. Based on this result, we suggest that the goal of sustained PT80 &lt;200 against 90% of circulating viruses can be achieved by promising bnAb regimens engineered for long half-lives. We propose the PT80 biomarker as a surrogate endpoint for evaluatinon of bnAb regimens, and as a tool for benchmarking candidate bnAb-inducing vaccines

    Compassionate Use of Remdesivir in Pregnant Women With Severe Coronavirus Disease 2019.

    No full text
    Remdesivir is efficacious for severe coronavirus disease 2019 (COVID-19) in adults, but data in pregnant women are limited. We describe outcomes in the first 86 pregnant women with severe COVID-19 who were treated with remdesivir. The reported data span 21 March to 16 June 2020 for hospitalized pregnant women with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 infection and room air oxygen saturation ≤94% whose clinicians requested remdesivir through the compassionate use program. The intended remdesivir treatment course was 10 days (200 mg on day 1, followed by 100 mg for days 2-10, given intravenously). Nineteen of 86 women delivered before their first dose and were reclassified as immediate "postpartum" (median postpartum day 1 [range, 0-3]). At baseline, 40% of pregnant women (median gestational age, 28 weeks) required invasive ventilation, in contrast to 95% of postpartum women (median gestational age at delivery 30 weeks). By day 28 of follow-up, the level of oxygen requirement decreased in 96% and 89% of pregnant and postpartum women, respectively. Among pregnant women, 93% of those on mechanical ventilation were extubated, 93% recovered, and 90% were discharged. Among postpartum women, 89% were extubated, 89% recovered, and 84% were discharged. Remdesivir was well tolerated, with a low incidence of serious adverse events (AEs) (16%). Most AEs were related to pregnancy and underlying disease; most laboratory abnormalities were grade 1 or 2. There was 1 maternal death attributed to underlying disease and no neonatal deaths. Among 86 pregnant and postpartum women with severe COVID-19 who received compassionate-use remdesivir, recovery rates were high, with a low rate of serious AEs

    Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition.

    Get PDF
    Whether a broadly neutralizing antibody (bnAb) can be used to prevent human immunodeficiency virus type 1 (HIV-1) acquisition is unclear. We enrolled at-risk cisgender men and transgender persons in the Americas and Europe in the HVTN 704/HPTN 085 trial and at-risk women in sub-Saharan Africa in the HVTN 703/HPTN 081 trial. Participants were randomly assigned to receive, every 8 weeks, infusions of a bnAb (VRC01) at a dose of either 10 or 30 mg per kilogram (low-dose group and high-dose group, respectively) or placebo, for 10 infusions in total. HIV-1 testing was performed every 4 weeks. The VRC01 80% inhibitory concentration (IC &lt;sub&gt;80&lt;/sub&gt; ) of acquired isolates was measured with the TZM-bl assay. Adverse events were similar in number and severity among the treatment groups within each trial. Among the 2699 participants in HVTN 704/HPTN 085, HIV-1 infection occurred in 32 in the low-dose group, 28 in the high-dose group, and 38 in the placebo group. Among the 1924 participants in HVTN 703/HPTN 081, infection occurred in 28 in the low-dose group, 19 in the high-dose group, and 29 in the placebo group. The incidence of HIV-1 infection per 100 person-years in HVTN 704/HPTN 085 was 2.35 in the pooled VRC01 groups and 2.98 in the placebo group (estimated prevention efficacy, 26.6%; 95% confidence interval [CI], -11.7 to 51.8; P = 0.15), and the incidence per 100 person-years in HVTN 703/HPTN 081 was 2.49 in the pooled VRC01 groups and 3.10 in the placebo group (estimated prevention efficacy, 8.8%; 95% CI, -45.1 to 42.6; P = 0.70). In prespecified analyses pooling data across the trials, the incidence of infection with VRC01-sensitive isolates (IC &lt;sub&gt;80&lt;/sub&gt; &lt;1 μg per milliliter) per 100 person-years was 0.20 among VRC01 recipients and 0.86 among placebo recipients (estimated prevention efficacy, 75.4%; 95% CI, 45.5 to 88.9). The prevention efficacy against sensitive isolates was similar for each VRC01 dose and trial; VRC01 did not prevent acquisition of other HIV-1 isolates. VRC01 did not prevent overall HIV-1 acquisition more effectively than placebo, but analyses of VRC01-sensitive HIV-1 isolates provided proof-of-concept that bnAb prophylaxis can be effective. (Supported by the National Institute of Allergy and Infectious Diseases; HVTN 704/HPTN 085 and HVTN 703/HPTN 081 ClinicalTrials.gov numbers, NCT02716675 and NCT02568215.)
    corecore