4 research outputs found

    Reduced Chemical Kinetic Model for Titan Entries

    Get PDF
    A reduced chemical kinetic model for Titan's atmosphere has been developed. This new model with 18 species and 28 reactions includes the mainfeatures of a more complete scheme, respecting the radiative fluxes. It has been verified against three key elements: a sensitivity analysis, the equilibrium chemical composition using shock tube simulations in CHEMKIN, and the results of computational fluid dynamics (CFDs) simulations

    TC4-2-Level 1: Rebuilding of Titan Atmosphere Plasma Radiation

    No full text
    Rebuilding of the experimental spectroscopy of Plasmatron and Plasma Torch data for an equivalent Titan atmosphere Chemistr

    The PSI meson target facility and its upgrade IMPACT-HIMB

    No full text
    The high intensity proton accelerator complex (HIPA) at the Paul Scherrer Institute (PSI) delivers a 590 MeV CW proton beam with currents up to 2.4 mA (1.4 MW). Besides two spallation targets for thermal/cold neutrons (SINQ) and for ultracold neutrons (UCN), the beam feeds two meson production targets Target M and Target E. The targets consist of graphite wheels of effective thickness 5 mm (M) and 40/60 mm (E). The target stations M and E are of quite different design; however, both of them rotate at 1 Hz to dissipate the heat (20 kW/mA for the 40 mm target E) efficiently. Recent progress was made by a new type of bearings and a new target geometry able to increase the rate of surface muons by up to 50 %. This is also foreseen for the upgrade of the target station M within the High Intensity Muon Beam (HIMB) initiative aiming to increase the surface muons available for experiment by two orders of magnitude. HIMB is part of IMPACT (Isotope and Muon Production with Advanced Cyclotron and Target Technology), an application for the Swiss Roadmap of Research Infrastructure
    corecore