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A reduced chemical kinetic model for Titan’s atmosphere has been developed. This new model with 18 species and 28 reactions
includes the mainfeatures of a more complete scheme, respecting the radiative fluxes. It has been verified against three key
elements: a sensitivity analysis, the equilibrium chemical composition using shock tube simulations in CHEMKIN, and the results
of computational fluid dynamics (CFDs) simulations.

1. Introduction

The Saturn largest moon Titan, with its thick atmosphere
rich in organic compounds and nitrogen, provides similar
aspects to Earth. As a consequence, numerous scientists are
interested in exploring it and are hoping for hints on how
life began on Earth. Thus, it is likely that new missions will
follow Cassini-Huygens and try to bring more information
on this orange moon. The accurate prediction of the heat
fluxes during the entry of the sounding probes is crucial to
the integrity of the probe and to the quality of the protection
of the scientific instruments.

To investigate further the limits of these fluxes, obligatory
for efficient thermal protection system design and sizing,
CFDs tools are constantly developed and improved. One of
the critical parameters for CFDs codes is the chemical kinetic
model, as it describes the reactions schemes. However, the
complexity of complete modelling is incompatible with
design tools, which require fast response time simulation,
and it is not necessary for such atmospheres, where the
dominant species dictate the physics.

The kinetic model depends primarily on the composition
of the atmosphere. Despite the recent success of the Cassini-
Huygens mission, uncertainties remain regarding the com-
position of Titan’s atmosphere. The main components are
N2, CH4, and Ar. One of the first kinetic models commonly
used was proposed by Nelson et al. [1] in 1991. However,
this first model does not take into account the formation

of CN via HCN (as this species is not included). Also,
as shown in many papers [2, 3], CN is a strong radiator
and the radiative heat flux is predominant during Titan
atmospheric entries. Moreover, the reaction rates used were
not up to date. Consequently, a new chemical kinetic model
was proposed by Gökçen [4], it is composed of 21 species
(N2, CH4, CH3, CH2, CH, C2, H2, CN, NH, HCN, N, C,
H, Ar, N+

2 , CN+, N+, C+, H+, Ar+, and e−) and 35 reactions
(rates for these reactions are given in Appendix A). Despite
this new reduced model, CFDs simulations are still time
and memory consuming (several hours depending on the
mesh and the physics implemented). As a consequence,
each species or reaction removed from Gökçen’s model is a
gain of time. More recently, Leyland et al. [5] proposed a
reduced model; however, discrepancies were encountered for
ion molar fractions. A further reduced mechanism including
18 species and 28 reactions is detailed in this paper. It has
been justified by a sensitivity analysis and verified against
Gökçen’s model using CHEMKIN (user interface software to
run reactor models) and MB CNS (a 2D Navier-Stokes time
explicit solver) from University of Queensland, Hypersonics
Centre, Australia.

2. Details of the Reduced Model

The new model proposed contains only 18 species (N2, CH4,
CH3, CH2, CH, C2, H2, CN, NH, HCN, N, C, H, N+

2 , CN+,
N+, C+, and e−) and 28 reactions (Appendix B). This model
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Figure 1: CN sensitivity coefficient.

was obtained following a two step analysis: first a comparison
of the global equilibrium composition (time histories of the
mole fractions) using CHEMKIN, second CFDs results were
obtained comparing CFDs results on the geometry of the
Huygens probe [2, 6]. For the suppression of the reactions,
the suggestion of Gökçen in his paper [4] was followed that
is to remove the reactions 13, 15, 16, 17, and 35 of his model
(Appendix A). A sensitivity analysis has also been performed
for temperature and CN molar fractions to justify this choice.
The suppression of the reactions numbered 32 and 33 is due
to the removal of the species H+, Ar, and Ar+. In Appendices
A and B, the parameter F corresponds to the uncertainty
factors as defined by Baulch et al. [7], the values are for most
of them estimations provided by Gökçen [4] and should be
considered as a lower limit on the uncertainty.

3. Sensitivity Analysis

Sensitivity coefficients of temperature and species moles
fractions to the pre-exponential factor of kinetic equation A
were calculated. A sensitivity coefficient shows the influence
of one parameter on another. It can be defined as

S = Δx/x

ΔA/A
, (1)

where x is the temperature or a molar fraction and A the pre-
exponential factor. If its value is close to 0, then there is no
interaction between the two parameters. In Figures 1 and 2
are plotted the sensitivity coefficients of the temperature and
the CN molar fraction for six reactions: the five we want to
remove (i.e., nos. 13, 15, 16, 17, and 35) and the reaction (1)
which is here for comparison. It is easily noticeable that the
five first reactions do not impact on the molar fraction of CN
and on the temperature.

Sensitivity analysis were also performed for H, C, N, and
e− but are not displayed here, as they gave similar results as
above. These analyses were performed for only one set of
initial conditions.
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Figure 2: Temperature sensitivity coefficient.
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Figure 3: Neutrals-Gökçen’s model.

4. Simulations with CHEMKIN

The first stage for the verification is a comparison of the
evolution of the molar fractions between the reaction set of
Gökçen given in Appendix A and the reduced one given in
Appendix B. It was made using CHEMKIN with a simplified
atmosphere of Titan, composed of 95% of N2 and 5%
of CH4. The test case retained was a shock tube without
boundary layer correction for an incident shock velocity of
6,300 m·s−1, a pressure of 0.1 Torr, and a temperature before
shock of 300 K. Thermodynamic data for species were calcu-
lated using 7 coefficient curve fits (old NASA form) obtained
from the data generated with CEA 9 coefficient polynomials.
The temperature range of verification is 300 K–2,000 K.
Besides, the downstream model equations assume that the
flow is adiabatic and that transport phenomena (i.e., viscos-
ity, thermal conduction, and mass diffusion) are negligible.

Time histories of molar fractions are plotted in Figures 3,
4, 5, and 6. Figures 3 and 4 show the neutrals and Figures 5
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Figure 4: Neutrals-reduced model.
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Figure 5: Ions-Gökçen’s model.

and 6 the ions. The reduced model is matching almost exactly
with Gökçen’s model.

In Figure 7, a comparison for the CN molar fraction and
for T is plotted. Particular attention is given to the formation
of CN, as it is a strong radiator and the main contributor of
the radiative heat flux encountered during Titan entry [8].

5. Presentation of the Test Cases for
the CFDs Code

Three test cases (TC1, TC2, and TC3) were retained for
verification in the CFDs simulations. They were given and
documented at the ESA Radiation Working Group Meetings
[9]. The differences between them are the atmosphere
composition and/or the chemical kinetic model. TC1 has
been performed with an atmosphere composed of 94.3% of
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Figure 6: Ions-reduced model.
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Figure 7: Comparison for CN molar fraction and T .

N2, 5.0% of CH4, and 0.7% of Ar with the Gökçen chemical
kinetic model. These values are determined so as to keep the
same concentration of CH4 as in the Yelle minimal profile
[10]. Indeed, the initial concentration of methane is decisive
for the formation of CN, which is a major criteria of the
model verification. In TC2, the same reaction scheme was
used, but it was with the minimal profile of Yelle atmosphere
that is, 95.0% of N2 and 5.0% of CH4. The third test case,
TC3, used the same atmosphere composition as TC2 but with
the reduced chemical kinetic model.

The inflow conditions were the one corresponding to
the peak heating of the Huygens probe [2]: velocity of
5126.3 m·s−1, density of 2.96 × 10−4, and temperature of
176.6 K (trajectory point: t = 189 s).

The test cases were performed on the Huygens probe
geometry [6]. It is a 60◦ half angle blunted cone with a base
diameter of 2.7 m and a nose radius of 1.25 m. To mesh
the domain, 80 nodes are used in both axial and radial
directions.
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Table 1: Shock standoff distance (cm).

TC1 TC2 TC3

9.6 ± 0.3 9.7 ± 0.3 9.6 ± 0.3

6. CFDs Simulations

The CFDs code used for the simulations is based on the
MB CNS tool developed at the University of Queensland,
Hypersonics Centre, Australia. It is a software for the
simulation of transient compressible flow in 2D, based on
a finite volume formulation of the Navier-Stokes equations.
Radiation modelisation has been implemented recently [9].
For the computation of viscosity and thermal conductivity
of each species, curve fits from McBride and Gordon [11] are
used

logμ(T) = a0 logT +
a1

T
+
a2

T2
+ a3,

log k(T) = b0 logT +
b1

T
+
b2

T2
+ b3.

(2)

The values for the coefficients are available in the CEA
program developed by NASA. The mixing rules used are a
variant of Wilke’s original formulation [12], they have been
developed by Gordon and McBride [13]

μmix =
N∑

i=1

xiμi

xi +
∑N

j=1, j /= i x jφi j
,

kmix =
N∑

i=1

xiki
xi +

∑N
j=1, j /= i x jψi j

,

(3)

where xi is the mole fraction of species i. φi and ψi are
interaction potentials, they are calculated using once again
the formulation of Gordon and McBride [13]

φi j = 1
4

⎡
⎣1 +

(
μi
μ j

)1/2(
Mj

Mi

)1/4
⎤
⎦

2(
2Mj

Mi +Mj

)1/2

,

ψij = φi j

⎡
⎢⎣1 +

2.41
(
Mi −Mj

)(
Mi − 0.142Mj

)

(
Mi +Mj

)2

⎤
⎥⎦.

(4)

Among all the radiation models implemented, the discrete
transfer method was chosen to perform the computations,
since data for Titan were readily available, and it was not too
time consuming. The radiating species were CN (Violet and
Red), N2 (first positive and second positive), and C2 (Swan).
Parameters of the radiation model were taken

(i) λmin = 250 nm,

(ii) λmax = 2000 nm,

(iii) spectral points = 1751,

(iv) number of rays = 32,

(v) electronic states in nonequilibrium.

The number of spectral points is quite small as we
are using the smeared rotational band (SRB) method to

Table 2: Heat fluxes comparison (W/cm2).

TC1 TC2 TC3

Conductive 19 32 32

Radiative 49 50 49

Total 68 82 81
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Figure 8: CN mass fraction-TC1.
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Figure 9: CN mass fraction-TC3.

determine the spectra and not a line-by-line model. Using
a line-by-line model with a discrete transfer method would
be more time consuming.

The first criteria of good agreement between the models
is the shock standoff distance. As shown in Table 1, the shock
standoff distance in not affected by the removal of Ar, Ar+,
and H+, nor by the reduced kinetic scheme.
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Table 3

k f = ATne−Ta/T A, cc/mol/s n Ta, K Source Uncert. est.

Dissociation reactions

(1) N2 + M � N + N + M 7.00 × 1021 −1.60 113,200 [14]/F = 3.0

Enhanced rate for M = N, C, H 3.00 × 1022 −1.60 113,200 [14]/F = 3.0–5.0

Enhanced rate for M = e− 3.00 × 1024 −1.60 113,200 [14]/F = 3.0

(2) CH4 + M � CH3 + H + M 4.70 × 1047 −8.20 59,200 [7]/F = 2.0

(3) CH3 + M � CH2 + H + M 1.02 × 1016 0.00 45,600 [7]/F = 1.26–3.2

(4) CH3 + M � CH + H2 + M 5.00 × 1015 0.00 42,800 [15]/F = 1.26–2.0

(5) CH2 + M � CH + H + M 4.00 × 1015 0.00 41,800 [15]/F = 1.26–2.0

(6) CH2 + M � C + H2 + M 1.30 × 1014 0.00 29,700 [15]/F = 1.26–2.0

(7) CH + M � C + H + M 1.90 × 1014 0.00 33,700 [15]/F = 1.26–2.0

(8) C2 + M � C + C + M 1.50 × 1016 0.00 71,600 [16]/F = 1.26–2.0

(9) H2 + M � H + H + M 2.23 × 1014 0.00 48,350 [7, 17]/F = 1.26–2.0

(10) CN + M � C + N + M 2.53 × 1014 0.00 71,000 [18, 19]/F = 1.5–2.0

(11) NH + M � N + H + M 1.80 × 1014 0.00 37,600 [20]/F = 1.26−−2.0

(12) HCN + M � CN + H + M 3.57 × 1026 −2.60 62,845 [21]/F = 1.5−−2.0

Radical reactions

(13) CH3 + N � HCN + H + H 7.00 × 1013 0.00 0 [22]/F = 10.0

(14) CH3 + H � CH2 + H2 6.03 × 1013 0.00 7,600 [17]/F = 10.0

(15) CH2 + N2 � HCN + NH 4.82 × 1012 0.00 18,000 [20]/F = 10.0

(16) CH2 + N � HCN + H 5.00 × 1013 0.00 0 [22]/F = 10.0

(17) CH2 + H � CH + H2 6.03 × 1012 0.00 −900 [20]/F = 5.0–10.0

(18) CH + N2 � HCN + N 4.40 × 1012 0.00 11,060 [22]/F = 1.5−−3.2

(19) CH + C � C2 + H 2.00 × 1014 0.00 0 [15]/F = 10.0

(20) C2 + N2 � CN + CN 1.50 × 1013 0.00 21,000 [23]/F = 1.26–2.0

(21) CN + H2 � HCN + H 2.95 × 105 0.00 1,130 [24]/F = 3.2−−5.0

(22) CN + C � C2 + N 5.00 × 1013 0.00 13,000 [14]/F = 2.0−−5.0

(23) N + H2 � NH + H 1.60 × 1014 0.00 12,650 [25]/F = 1.26–2.0

(24) C + N2 � CN + N 5.24 × 1013 0.00 22,600 [7]/F = 1.6−−2.0

(25) C + H2 � CH + H 4.00 × 1014 0.00 11,700 [26]/F = 1.6–2.0

(26) H + N2 � NH + N 3.00 × 1012 0.50 71,400 [27]/F = 2.0–3.2

(27) H + CH4 � CH3 + H2 1.32 × 104 3.00 4,045 [7, 17]/F = 1.6–2.0

Ionization reactions

(28) N + N � N+
2 + e− 4.40 × 107 1.50 67,500 [14]/F = 10.0

(29) C + N � CN+ + e− 1.00 × 1015 1.50 164,400 [1]/F ≥ 10.0

(30) N + e− � N+ + e− + e− 2.50 × 1034 −3.82 168,600 [14, 28]/F = 10.0

(31) C + e− � C+ + e− + e− 3.70 × 1031 −3.00 130,720 [14]/F = 10.0

(32) H + e− � H+ + e− + e− 2.20 × 1030 −2.80 157,800 [14]/F ≥ 10.0

(33) Ar + e− � Ar+ + e− + e− 2.50 × 1034 −3.82 181,700 [1]/F ≥ 10.0

(34) CN+ + N � CN + N+ 9.80 × 1012 0.00 40,700 [1]/F ≥ 10.0

(35) C+ + N2 � N+
2 + C 1.11 × 1014 −0.11 50,000 [1]/F ≥ 10.0

As CN is the main radiator, it is crucial that the new
reduced model (TC3) gives the same CN concentrations as
TC1.

Figures 8 and 9 show that the CN distribution is very
close; consequently, the radiative flux obtained in both cases
should be similar as well. Temperature profiles among the
stagnation line are displayed in Figure 10. For TC3, the
temperature peak is a slightly higher and sharper due to the

removal of Ar. In Figure 11, it can be noticed that in TC1, the
wall temperature is lower, this will lead to a lower conductive
heat flux as well.

In Table 2, values obtained for the different components
of the total heat flux are summarised.

As predicted, the conductive heat flux is smaller for
TC1. However, the uncertainties on the heat fluxes are about
5 W/cm2; consequently, they can be considered to be in the
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Table 4

k f = ATne−Ta/T A, cc/mol/s n Ta, K Source Uncert. est.

Dissociation reactions

(1) N2 + M � N + N + M 7.00 × 1021 −1.60 113,200 [14]/F = 3.0

Enhanced rate for M = N, C, H 3.00 × 1022 −1.60 113,200 [14]/F = 3.0–5.0

Enhanced rate for M = e− 3.00 × 1024 −1.60 113,200 [14]/F = 3.0

(2) CH4 + M � CH3 + H + M 4.70 × 1047 −8.20 59,200 [7]/F = 2.0

(3) CH3 + M � CH2 + H + M 1.02 × 1016 0.00 45,600 [7]/F = 1.26–3.2

(4) CH3 + M � CH + H2 + M 5.00 × 1015 0.00 42,800 [15]/F = 1.26–2.0

(5) CH2 + M � CH + H + M 4.00 × 1015 0.00 41,800 [15]/F = 1.26–2.0

(6) CH2 + M � C + H2 + M 1.30 × 1014 0.00 29,700 [15]/F = 1.26–2.0

(7) CH + M � C + H + M 1.90 × 1014 0.00 33,700 [15]/F = 1.26–2.0

(8) C2 + M � C + C + M 1.50 × 1016 0.00 71,600 [16]/F = 1.26–2.0

(9) H2 + M � H + H + M 2.23 × 1014 0.00 48,350 [7, 17]/F = 1.26–2.0

(10) CN + M � C + N + M 2.53 × 1014 0.00 71,000 [18, 19]/F = 1.5–2.0

(11) NH + M � N + H + M 1.80 × 1014 0.00 37,600 [20]/F = 1.26−−2.0

(12) HCN + M � CN + H + M 3.57 × 1026 −2.60 62,845 [21]/F = 1.5–2.0

Radical reactions

(13) CH3 + H � CH2 + H2 6.03 × 1013 0.00 7,600 [17]/F = 10.0

(14) CH + N2 � HCN + N 4.40 × 1012 0.00 11,060 [22]/F = 1.5–3.2

(15) CH + C � C2 + H 2.00 × 1014 0.00 0 [15]/F = 10.0

(16) C2 + N2 � CN + CN 1.50 × 1013 0.00 21,000 [23]/F = 1.26–2.0

(17) CN + H2 � HCN + H 2.95 × 105 0.00 1,130 [24]/F = 3.2–5.0

(18) CN + C � C2 + N 5.00 × 1013 0.00 13,000 [14]/F = 2.0–5.0

(19) N + H2 � NH + H 1.60 × 1014 0.00 12,650 [25]/F = 1.26–2.0

(20) C + N2 � CN + N 5.24 × 1013 0.00 22,600 [7]/F = 1.6–2.0

(21) C + H2 � CH + H 4.00 × 1014 0.00 11,700 [26]/F = 1.6–2.0

(22) H + N2 � NH + N 3.00 × 1012 0.50 71,400 [27]/F = 2.0–3.2

(23) H + CH4 � CH3 + H2 1.32 × 104 3.00 4,045 [7, 17]/F = 1.6–2.0

Ionization reactions

(24) N + N � N+
2 + e− 4.40 × 107 1.50 67,500 [14]/F = 10.0

(25) C + N � CN+ + e− 1.00 × 1015 1.50 164,400 [1]/F ≥ 10.0

(26) N + e− � N+ + e− + e− 2.50 × 1034 −3.82 168,600 [14, 28]/F = 10.0

(27) C + e− � C+ + e− + e− 3.70 × 1031 −3.00 130,720 [14]/F = 10.0

(28) CN+ + N � CN + N+ 9.80 × 1012 0.00 40,700 [1]/F ≥ 10.0

same order of magnitude. It is also noticeable that the values
for the radiative fluxes are in good agreement with other
results in the literature [12].

7. Conclusions

This new reduced model including only 18 species (N2, CH4,
CH3, CH2, CH, C2, H2, CN, NH, HCN, N, C, H, N+

2 , CN+,
N+, C+, and e−) and 28 reactions (instead of 35) is in very
good agreement with the kinetic reaction set developed by
Gökçen. The distribution of CN, main radiator, is almost
identical as the full model. As for the heat fluxes, the order
of magnitude is the same even though the conductive heat
flux is higher in TC3 due to the removal of Ar which can
reduce the electronic temperature. Attempts were also made

to reduce further this model, like for example the removal of
C+. This, however, leads to huge discrepancies in the molar
fractions of charged particles especially for electrons.

Appendices

A. Gökçen Chemical Reaction Set for
N2-CH4-Ar Mixtures

See Table 3.

B. Reduced Chemical Reaction Set for
N2-CH4-Ar Mixtures

See Table 4.
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