7 research outputs found

    Genetics of Mechanosensation in the Heart

    Get PDF
    Mechanosensation (the ultimate conversion of a mechanical stimulus into a biochemical signal) as well as mechanotransduction (transmission of mechanically induced signals) belong to the most fundamental processes in biology. These effects, because of their dynamic nature, are particularly important for the cardiovascular system. Therefore, it is not surprising that defects in cardiac mechanosensation, are associated with various types of cardiomyopathy and heart failure. However, our current knowledge regarding the genetic basis of impaired mechanosensation in the cardiovascular system is beginning to shed light on this subject and is at the centre of this brief review

    MLP (muscle LIM protein) as a stress sensor in the heart

    Get PDF
    Muscle LIM protein (MLP, also known as cysteine rich protein 3 (CSRP3, CRP3)) is a muscle-specific-expressed LIM-only protein. It consists of 194 amino-acids and has been described initially as a factor involved in myogenesis (Arber et al. Cell 79:221–231, 1994). MLP soon became an important model for experimental cardiology when it was first demonstrated that MLP deficiency leads to myocardial hypertrophy followed by a dilated cardiomyopathy and heart failure phenotype (Arber et al. Cell 88:393–403, 1997). At this time, this was the first genetically altered animal model to develop this devastating disease. Interestingly, MLP was also found to be down-regulated in humans with heart failure (Zolk et al. Circulation 101:2674–2677, 2000) and MLP mutations are able to cause hypertrophic and dilated forms of cardiomyopathy in humans (Bos et al. Mol Genet Metab 88:78–85, 2006; Geier et al. Circulation 107:1390–1395, 2003; Hershberger et al. Clin Transl Sci 1:21–26, 2008; Knöll et al. Cell 111:943–955, 2002; Knöll et al. Circ Res 106:695–704, 2010; Mohapatra et al. Mol Genet Metab 80:207–215, 2003). Although considerable efforts have been undertaken to unravel the underlying molecular mechanisms—how MLP mutations, either in model organisms or in the human setting cause these diseases are still unclear. In contrast, only precise knowledge of the underlying molecular mechanisms will allow the development of novel and innovative therapeutic strategies to combat this otherwise lethal condition. The focus of this review will be on the function of MLP in cardiac mechanosensation and we shall point to possible future directions in MLP research

    Familial dilated cardiomyopathy: evidence for genetic and phenotypic heterogeneity. Heart Muscle Disease Study Group.

    No full text
    AbstractOBJECTIVESThis study was performed to evaluate the characteristics, mode of inheritance and etiology of familial dilated cardiomyopathy (FDC).BACKGROUNDA genetic form of disease transmission has been identified in a relevant proportion of patients with dilated cardiomyopathy (DCM). Variable clinical characteristics and patterns of inheritance, and an increased frequency of cardiac antibodies have been reported. An analysis of FDC may improve the understanding of the disease and the management of patients.METHODSOf 350 consecutive patients with idiopathic DCM, 281 relatives from 60 families were examined. Family studies included clinical examination, electrocardiography, echocardiography and blood sampling. Of the 60 DCM index patients examined, 39 were attributable to FDC and 21 were due to sporadic DCM. Clinical features, histology, mode of inheritance and autoimmune serology were examined, molecular genetic studies were undertaken and the difference between familial and sporadic forms was analyzed.RESULTSOnly a younger age (p = 0.0005) and a higher ejection fraction (p = 0.03) could clinically distinguish FDC patients from those with sporadic DCM. However, a number of distinct subtypes of FDC were identified: 1) autosomal dominant, the most frequent form (56%); 2) autosomal recessive (16%), characterized by worse prognosis; 3) X-linked FDC (10%), with different mutations of the dystrophin gene; 4) a novel form of autosomal dominant DCM with subclinical skeletal muscle disease (7.7%); 5) FDC with conduction defects (2.6%), and 6) rare unclassifiable forms (7.7%). The forms with skeletal muscle involvement were characterized by a restrictive filling pattern; the forms with isolated cardiomyopathy had an increased frequency of organ-specific cardiac autoantibodies. Histologic signs of myocarditis were frequent and nonspecific.CONCLUSIONSFamilial dilated cardiomyopathy is frequent, cannot be predicted on a clinical or morphologic basis and requires family screening for identification. The phenotypic heterogeneity, different patterns of transmission, different frequencies of cardiac autoantibodies and the initial molecular genetic data indicate that multiple genes and pathogenetic mechanisms can lead to FDC
    corecore