529 research outputs found

    Managing complex engineering projects: What can we learn from the evolving digital footprint?

    Get PDF
    The challenges of managing large complex engineering projects, such as those involving the design of infrastructure, aerospace and industrial systems; are widely acknowledged. While there exists a mature set of project management tools and methods, many of today's projects overrun in terms of both time and cost. Existing literature attributes these overruns to factors such as: unforeseen dependencies, a lack of understanding, late changes, poor communication, limited resource availability (inc. personnel), incomplete data and aspects of culture and planning. Fundamental to overcoming these factors belies the challenge of how management information relating to them can be provided, and done so in a cost eff; ective manner. Motivated by this challenge, recent research has demonstrated how management information can be automatically generated from the evolving digital footprint of an engineering project, which encompasses a broad range of data types and sources. In contrast to existing work that reports the generation, verification and application of methods for generating management information, this paper reviews all the reported methods to appraise the scope of management information that can be automatically generated from the digital footprint. In so doing, the paper presents a reference model for the generation of managerial information from the digital footprint, an appraisal of 27 methods, and a critical reflection of the scope and generalisability of data-driven project management methods. Key findings from the appraisal include the role of email in providing insights into potential issues, the role of computer models in automatically eliciting process and product dependencies, and the role of project documentation in assessing project norms. The critical reflection also raises issues such as privacy, highlights the enabling technologies, and presents opportunities for new Business Intelligence tools that are based on real-time monitoring and analysis of digital footprints.</p

    (Teff,log g,[Fe/H]) Classification of Low-Resolution Stellar Spectra using Artificial Neural Networks

    Get PDF
    New generation large-aperture telescopes, multi-object spectrographs, and large format detectors are making it possible to acquire very large samples of stellar spectra rapidly. In this context, traditional star-by-star spectroscopic analysis are no longer practical. New tools are required that are capable of extracting quickly and with reasonable accuracy important basic stellar parameters coded in the spectra. Recent analyses of Artificial Neural Networks (ANNs) applied to the classification of astronomical spectra have demonstrated the ability of this concept to derive estimates of temperature and luminosity. We have adapted the back-propagation ANN technique developed by von Hippel et al. (1994) to predict effective temperatures, gravities and overall metallicities from spectra with resolving power ~ 2000 and low signal-to-noise ratio. We show that ANN techniques are very effective in executing a three-parameter (Teff,log g,[Fe/H]) stellar classification. The preliminary results show that the technique is even capable of identifying outliers from the training sample.Comment: 6 pages, 3 figures (5 files); to appear in the proceedings of the 11th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, held on Tenerife (Spain), October 1999; also available at http://hebe.as.utexas.ed
    corecore