64 research outputs found

    Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

    Get PDF
    The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The {sup 176}Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental hafnium resonance integral however, changed very little

    EQ-5D in Central and Eastern Europe : 2000-2015

    Get PDF
    Objective: Cost per quality-adjusted life year data are required for reimbursement decisions in many Central and Eastern European (CEE) countries. EQ-5D is by far the most commonly used instrument to generate utility values in CEE. This study aims to systematically review the literature on EQ-5D from eight CEE countries. Methods: An electronic database search was performed up to July 1, 2015 to identify original EQ-5D studies from the countries of interest. We analysed the use of EQ-5D with respect to clinical areas, methodological rigor, population norms and value sets. Results: We identified 143 studies providing 152 country-specific results with a total sample size of 81,619: Austria (n=11), Bulgaria (n=6), Czech Republic (n=18), Hungary (n=47), Poland (n=51), Romania (n=2), Slovakia (n=3) and Slovenia (n=14). Cardiovascular (20%), neurologic (16%), musculoskeletal (15%) and endocrine/nutritional/metabolic diseases (14%) were the most frequently studied clinical areas. Overall 112 (78%) of the studies reported EQ VAS results and 86 (60%) EQ-5D index scores, of which 27 (31%) did not specify the applied tariff. Hungary, Poland and Slovenia have population norms. Poland and Slovenia also have a national value set. Conclusions: Increasing use of EQ-5D is observed throughout CEE. The spread of health technology assessment activities in countries seems to be reflected in the number of EQ-5D studies. However, improvement in informed use and methodological quality of reporting is needed. In jurisdictions where no national value set is available, in order to ensure comparability we recommend to apply the most frequently used UK tariff. Regional collaboration between CEE countries should be strengthened

    Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer

    Get PDF
    An Author Correction to this article was published on 29 May 2018 https://www.nature.com/articles/s41477-018-0163-4 http://eprints.whiterose.ac.uk/131699/ Upon transition of plants from darkness to light the initiation of photosynthetic linear electron transfer (LET) from H2O to NADP+ precedes the activation of CO2 fixation, creating a lag period where cyclic electron transfer (CET) around photosystem I (PSI) has an important protective role. CET generates ΔpH without net reduced NADPH formation, preventing overreduction of PSI via regulation of the cytochrome b 6 f (cytb 6 f) complex and protecting PSII from overexcitation by inducing non-photochemical quenching. The dark-to-light transition also provokes increased phosphorylation of light-harvesting complex II (LHCII). However, the relationship between LHCII phosphorylation and regulation of the LET/CET balance is not understood. Here, we show that the dark-to-light changes in LHCII phosphorylation profoundly alter thylakoid membrane architecture and the macromolecular organization of the photosynthetic complexes, without significantly affecting the antenna size of either photosystem. The grana diameter and number of membrane layers per grana are decreased in the light while the number of grana per chloroplast is increased, creating a larger contact area between grana and stromal lamellae. We show that these changes in thylakoid stacking regulate the balance between LET and CET pathways. Smaller grana promote more efficient LET by reducing the diffusion distance for the mobile electron carriers plastoquinone and plastocyanin, whereas larger grana enhance the partition of the granal and stromal lamellae plastoquinone pools, enhancing the efficiency of CET and thus photoprotection by non-photochemical quenching
    corecore