5 research outputs found

    Turbofan forced mixer lobe flow modeling. 1: Experimental and analytical assessment

    Get PDF
    A joint analytical and experimental investigation of three-dimensional flowfield development within the lobe region of turbofan forced mixer nozzles is described. The objective was to develop a method for predicting the lobe exit flowfield. In the analytical approach, a linearized inviscid aerodynamical theory was used for representing the axial and secondary flows within the three-dimensional convoluted mixer lobes and three-dimensional boundary layer analysis was applied thereafter to account for viscous effects. The experimental phase of the program employed three planar mixer lobe models having different waveform shapes and lobe heights for which detailed measurements were made of the three-dimensional velocity field and total pressure field at the lobe exit plane. Velocity data was obtained using Laser Doppler Velocimetry (LDV) and total pressure probing and hot wire anemometry were employed to define exit plane total pressure and boundary layer development. Comparison of data and analysis was performed to assess analytical model prediction accuracy. As a result of this study a planar mixed geometry analysis was developed. A principal conclusion is that the global mixer lobe flowfield is inviscid and can be predicted from an inviscid analysis and Kutta condition

    Thrust performance of isolated, two-dimensional suppressed plug nozzles with and without ejectors at Mach numbers from 0 to 0.45

    Get PDF
    A series of two-dimensional plug nozzles was tested with and without ejector shrouds at free stream Mach numbers from 0 to 0.45 and over a range of nozzle pressure ratios from 2 to 4. These nozzles were also tested with and without chute noise suppressors. A two-dimensional plug nozzle has an efficiency of 96.1 percent at an assumed takeoff pressure ratio of 3.0 and Mach 0.36. A 12-chute suppressed nozzle with sidewalls has an efficiency of 81.0 percent (15.1 percent below the unsuppressed nozzle)

    Thrust performance of isolated 36-chute suppressor plug nozzles with and without ejectors at Mach numbers from 0 to 0.45

    Get PDF
    Plug nozzles with chute-type noise suppressors were tested with and without ejector shrouds at free-stream Mach numbers from 0 to 0.45 and over a range of nozzle pressure ratios from 2 to 4. A 36-chute suppressor nozzle with an ejector had an efficiency of 94.6 percent at an assumed takeoff pressure ratio of 3.0 and a Mach number of 0.36. This represents only a 3.4 percent performance penalty when compared with the 98 percent efficiency obtained with a previously tested unsuppressed plug nozzle
    corecore