8 research outputs found
Recommended from our members
The atmospheric impact of uncertainties in recent Arctic Sea ice reconstructions
There are significant discrepancies between observational datasets of Arctic sea ice concentrations covering the last three decades, which result in differences of over 20% in Arctic summer sea ice extent/area and 5%–10% in winter. Previous modeling studies have shown that idealized sea ice anomalies have the potential for making a substantial impact on climate. In this paper, this theory is further developed by performing a set of simulations using the third Hadley Centre Coupled Atmospheric Model (HadAM3). The model was driven with monthly climatologies of sea ice fractions derived from three of these records to investigate potential implications of sea ice inaccuracies for climate simulations. The standard sea ice climatology from the Met Office provided a control. This study focuses on the effects of actual inaccuracies of concentration retrievals, which vary spatially and are larger in summer than winter.
The smaller sea ice discrepancies in winter have a much larger influence on climate than the much greater summer sea ice differences. High sensitivity to sea ice prescription was observed, even though no SST feedbacks were included. Significant effects on surface fields were observed in the Arctic, North Atlantic, and North Pacific. Arctic average surface air temperature anomalies in winter vary by 2.5°C, and locally exceed 12°C. Arctic mean sea level pressure varies by up to 5 mb locally. Anomalies extend to 45°N over North America and Eurasia but not to lower latitudes, and with limited changes in circulation above the boundary layer. No statistically significant impact on climate variability was simulated, in terms of the North Atlantic Oscillation. Results suggest that the uncertainty in summer sea ice prescription is not critical but that winter values require greater accuracy, with the caveats that the influences of ocean–sea ice feedbacks were not included in this study
Recommended from our members
Interhemispheric coupling, the West Antarctic Ice Sheet and warm Antarctic interglacials
Ice core evidence indicates that even though atmospheric
CO2 concentrations did not exceed 300 ppm at
any point during the last 800 000 years, East Antarctica was
at least 3–4 C warmer than preindustrial (CO2 280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (3000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as “Warmer than Present Transients” (WPTs). We present a series of experiments to investigate the impact of deglacial meltwater on the Atlantic Meridional Overturning Circulation (AMOC) and Antarctic temperature.
It is well known that a slowed AMOC would increase southern
sea surface temperature (SST) through the bipolar seesaw
and observational data suggests that the AMOC remained
weak throughout the terminations precedingWPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. We present two 800 kyr transient simulations using the Intermediate Complexity model GENIE-1 which demonstrate that meltwater forcing generates transient southern warming that is consistent with the timing of WPTs, but is not sufficient (in this single parameterisation) to reproduce the magnitude of observed warmth. In order to investigate model and boundary condition uncertainty, we present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 BP. Only with consideration of the possible feedback of West Antarctic Ice Sheet (WAIS)
retreat does it become possible to simulate the magnitude of
observed warming
Last glacial vegetation of northern Eurasia
In order to investigate the potential role of vegetation changes in megafaunal extinctions during the later part of the last glacial stage and early Holocene (42-10 ka BP), the palaeovegetation of northern Eurasia and Alaska was simulated using the LPJ-GUESS dynamic vegetation model. Palaeoclimatic driving data were derived from simulations made for 22 time slices using the Hadley Centre Unified Model. Modelled annual net primary productivity (aNPP) of a series of plant functional types (PFTs) is mapped for selected time slices and summarised for major geographical regions for all time slices. Strong canonical correlations are demonstrated between model outputs and pollen data compiled for the same period and region. Simulated aNPP values, especially for tree PFTs and for a mesophilous herb PFT, provide evidence of the structure and productivity of last glacial vegetation. The mesophilous herb PFT aNPP is higher in many areas during the glacial than at present or during the early Holocene. Glacial stage vegetation, whilst open and largely treeless in much of Europe, thus had a higher capacity to support large vertebrate herbivore populations than did early Holocene vegetation. A marked and rapid decrease in aNPP of mesophilous herbs began shortly after the Last Glacial Maximum, especially in western Eurasia. This is likely implicated in extinction of several large herbivorous mammals during the latter part of the glacial stage and the transition to the Holocene. (c) 2010 Elsevier Ltd. All rights reserved
Explaining patterns of avian diversity and endemicity: climate and biomes of southern Africa over the last 140,000 years
Aim Test hypotheses that present biodiversity and endemic species richness are related to climatic stability and/or biome persistence. Location Africa south of 15° S. Methods Seventy eight HadCM3 general circulation model palaeoclimate experiments spanning the last 140,000 years, plus a pre-industrial experiment, were used to calculate measures of climatic variability for 0.5° grid cells. Models were fitted relating distributions of the nine biomes of South Africa, Lesotho and Swaziland to present climate. These models were used to simulate potential past biome distribution and extent for the 78 palaeoclimate experiments, and three measures of biome persistence. Climatic response surfaces were fitted for 690 bird species regularly breeding in the region and used to simulate present species richness for cells of the 0.5° grid. Species richness was evaluated for residents, mobile species (nomadic or partially/altitudinally migrant within the region), and intra-African migrants, and also separately for endemic/near-endemic (hereafter ‘endemic’) species as a whole and those associated with each biome. Our hypotheses were tested by analysing correlations between species richness and climatic variability or biome persistence. Results The magnitude of climatic variability showed clear spatial patterns. Marked changes in biome distributions and extents were projected, although limited areas of persistence were projected for some biomes. Overall species richness was not correlated with climatic variability, although richness of mobile species showed a weak negative correlation. Endemic species richness was significantly negatively correlated with climatic variability. Strongest correlations, however, were positive correlations between biome persistence and richness of endemics associated with individual biomes. Main conclusions Low climatic variability, and especially a degree of stability enabling biome persistence, is strongly correlated with species richness of birds endemic to southern Africa. This probably principally reflects reduced extinction risk for these species where the biome to which they are adapted persisted
Terrestrial biosphere changes over the last 120 kyr and their impact on ocean δ 13C
A new global synthesis and biomization of long (>40 kyr) pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial-interglacial cycle. Global modelled (BIOME4) biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP). NPP is strongly influenced by atmospheric carbon dioxide (CO2) concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model) soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210-470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330-960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ13C) of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ13C based on modelled land carbon storage, and palaeo-archives of ocean δ13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ13C changes
Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea
Recent Arctic changes are likely due to coupled Arctic amplification mechanisms with increased linkage between Arctic climate and sub-Arctic weather. Historically, sea ice grew rapidly in autumn, a strong negative radiative feedback. But increased sea-ice mobility, loss of multi-year sea ice, enhanced heat storage in newly sea ice-free ocean areas, and modified wind fields form connected positive feedback processes. One-way shifts in the Arctic system are sensitive to the combination of episodic intrinsic atmospheric and ocean variability and persistent increasing greenhouse gases. Winter 2009/10 and December 2010 showed a unique connectivity between the Arctic and more southern weather patterns when the typical polar vortex was replaced by high geopotential heights over the central Arctic and low heights over mid-latitudes that resulted in record snow and low temperatures, a warm Arctic—cold continents pattern. The negative value of the winter (DJF 2009/10) North Atlantic Oscillation (NAO) index associated with enhanced meridional winds was the lowest observed value since the beginning of the record in 1865. Wind patterns in December 2007 and 2008 also show an impact of warmer Arctic temperatures. A tendency for higher geopotential heights over the Arctic and enhanced meridional winds are physically consistent with continued loss of sea ice over the next 40 years. A major challenge is to understand the interaction of Arctic changes with climate patterns such as the NAO, Pacific North American and El Niño–Southern Oscillation