10,444 research outputs found

    Quantization and simulation of Born-Infeld non-linear electrodynamics on a lattice

    Full text link
    Born-Infeld non-linear electrodynamics arises naturally as a field theory description of the dynamics of strings and branes. Most analyses of this theory have been limited to studying it as a classical field theory. We quantize this theory on a Euclidean 4-dimensional space-time lattice and determine its properties using Monte-Carlo simulations. The electromagnetic field around a static point charge is measured using Luscher-Weisz methods to overcome the sign problem associated with the introduction of this charge. The D field appears identical to that of Maxwell QED. However, the E field is enhanced by quantum fluctuations, while still showing the short distance screening observed in the classical theory. In addition, whereas for the classical theory, the screening increases without bound as the non-linearity increases, the quantum theory approaches a limiting conformal field theory.Comment: 24 pages, 10 figures. Latex with postscript figure

    An Australia telescope survey for CMB anisotropies

    Get PDF
    We have surveyed six distinct `empty fields' using the Australia Telescope Compact Array in an ultra-compact configuration with the aim of imaging, with a high brightness sensitivity, any arcmin-scale brightness-temperature anisotropies in the background radio sky. The six well-separated regions were observed at a frequency of 8.7 GHz and the survey regions were limited by the ATCA primary beams which have a full width at half maximum of 6 arcmin at this frequency; all fields were observed with a resolution of 2 arcmin and an rms thermal noise of 24 microJy/beam. After subtracting foreground confusion detected in higher resolution images of the fields, residual fluctuations in Stokes I images are consistent with the expectations from thermal noise and weaker (unidentified) foreground sources; the Stokes Q and U images are consistent with expectations from thermal noise. Within the sensitivity of our observations, we have no reason to believe that there are any Sunyaev-Zeldovich holes in the microwave sky surveyed. Assuming Gaussian-form CMB anisotropy with a `flat' spectrum, we derive 95 per cent confidence upper limits of Q_flat < 10--11 microK in polarized intensity and Q_flat < 25 microK in total intensity. The ATCA filter function peaks at l=4700 and has half maximum values at l=3350 and 6050.Comment: 17 pages, includes 8 figures and 6 tables, accepted for publication in MNRA

    How Well Does "Core" CPI Capture Permanent Price Changes?

    Get PDF
    We decompose core CPI and the food and energy CPI measures into permanent and transitory components using a correlated unobserved components model, to examine the behavior of core CPI when subject to shocks and to examine the claim that core CPI captures the persistent part of headline CPI. We find that the permanent component of core CPI is more volatile than core CPI, or that the permanent and transitory components are highly correlated. We find that the excluded food and energy components have important permanent components, and that core CPI has an important transitory component. We examine impulse response functions and find that headline CPI inflation responds more sharply to shocks than core CPI inflation, and after the first year the impact of shocks on headline inflation is less than the impact on core inflation.unobserved components, CPI, price indices, inflation, core

    Evidence for O(2) universality at the finite temperature transition for lattice QCD with 2 flavours of massless staggered quarks

    Full text link
    We simulate lattice QCD with 2 flavours of massless quarks on lattices of temporal extent N_t=8, to study the finite temperature transition from hadronic matter to a quark-gluon plasma. A modified action which incorporates an irrelevant chiral 4-fermion interaction is used, which allows simulations at zero quark mass. We obtain excellent fits of the chiral condensates to the magnetizations of a 3-dimensional O(2) spin model on lattices small enough to model the finite size effects. This gives predictions for correlation lengths and chiral susceptibilities from the corresponding spin-model quantities. These are in good agreement with our measurements over the relevant range of parameters. Binder cumulants are measured, but the errors are too large to draw definite conclusions. From the properties of the O(2) spin model on the relatively small lattices with which we fit our `data', we can see why earlier attempts to fit staggered lattice data to leading-order infinite-volume scaling functions, as well as finite size scaling studies, failed and led to erroneous conclusions.Comment: 27 pages, Latex with 10 postscript figures. Some of the discussions have been expanded to satisfy a referee. Typographical errors were correcte

    The RHMC algorithm for theories with unknown spectral bounds

    Get PDF
    The Rational Hybrid Monte Carlo (RHMC) algorithm extends the Hybrid Monte Carlo algorithm for lattice QCD simulations to situations involving fractional powers of the determinant of the quadratic Dirac operator. This avoids the updating increment (dtdt) dependence of observables which plagues the Hybrid Molecular-dynamics (HMD) method. The RHMC algorithm uses rational approximations to fractional powers of the quadratic Dirac operator. Such approximations are only available when positive upper and lower bounds to the operator's spectrum are known. We apply the RHMC algorithm to simulations of 2 theories for which a positive lower spectral bound is unknown: lattice QCD with staggered quarks at finite isospin chemical potential and lattice QCD with massless staggered quarks and chiral 4-fermion interactions (χ\chiQCD). A choice of lower bound is made in each case, and the properties of the RHMC simulations these define are studied. Justification of our choices of lower bounds is made by comparing measurements with those from HMD simulations, and by comparing different choices of lower bounds.Comment: Latex(Revtex 4) 25 pages, 8 postscript figure

    ArCLight - a Compact Dielectric Large-Area Photon Detector

    Get PDF
    ArCLight is a novel device for detecting scintillation light over large areas with Photon Detection Efficiency (PDE) of the order of a few percent. Its robust technological design allows for efficient use in large-volume particle detectors, such as Liquid Argon Time Projection Chambers (LArTPCs) or liquid scintillator detectors. Due to its dielectric structure it can be placed inside volumes with high electric field. It could potentially replace vacuum PhotoMultiplier Tubes (PMTs) in applications where high PDE is not required. The photon detection efficiency for a 10x10cm2 detector prototype was measured to be in the range of 0.8% to 2.2% across the active area

    Simulations of a Scintillator Compton Gamma Imager for Safety and Security

    Full text link
    We are designing an all-scintillator Compton gamma imager for use in security investigations and remediation actions involving radioactive threat material. To satisfy requirements for a rugged and portable instrument, we have chosen solid scintillator for the active volumes of both the scatter and absorber detectors. Using the BEAMnrc/EGSnrc Monte Carlo simulation package, we have constructed models using four different materials for the scatter detector: LaBr_3, NaI, CaF_2 and PVT. We have compared the detector performances using angular resolution, efficiency, and image resolution. We find that while PVT provides worse performance than that of the detectors based entirely on inorganic scintillators, all of the materials investigated for the scatter detector have the potential to provide performance adequate for our purposes.Comment: Revised text and figures, Presented at SORMA West 2008, Published in IEEE Transactions on Nuclear Scienc

    Kadison-Kastler stable factors

    Get PDF
    A conjecture of Kadison and Kastler from 1972 asks whether sufficiently close operator algebras in a natural uniform sense must be small unitary perturbations of one another. For n≥3 and a free, ergodic, probability measure-preserving action of SL&lt;sub&gt;n&lt;/sub&gt;(Z) on a standard nonatomic probability space (X,μ), write M=(L&lt;sup&gt;∞&lt;/sup&gt;(X,μ)⋊SL&lt;sub&gt;n&lt;/sub&gt;(Z))⊗¯¯¯R, where R is the hyperfinite II1-factor. We show that whenever M is represented as a von Neumann algebra on some Hilbert space H and N⊆B(H) is sufficiently close to M, then there is a unitary u on H close to the identity operator with uMu∗=N. This provides the first nonamenable class of von Neumann algebras satisfying Kadison and Kastler’s conjecture. We also obtain stability results for crossed products L&lt;sup&gt;∞&lt;/sup&gt;(X,μ)⋊Γ whenever the comparison map from the bounded to usual group cohomology vanishes in degree 2 for the module L&lt;sup&gt;2&lt;/sup&gt;(X,μ). In this case, any von Neumann algebra sufficiently close to such a crossed product is necessarily isomorphic to it. In particular, this result applies when Γ is a free group
    • …
    corecore