research

Kadison-Kastler stable factors

Abstract

A conjecture of Kadison and Kastler from 1972 asks whether sufficiently close operator algebras in a natural uniform sense must be small unitary perturbations of one another. For n≥3 and a free, ergodic, probability measure-preserving action of SL<sub>n</sub>(Z) on a standard nonatomic probability space (X,μ), write M=(L<sup>∞</sup>(X,μ)⋊SL<sub>n</sub>(Z))⊗¯¯¯R, where R is the hyperfinite II1-factor. We show that whenever M is represented as a von Neumann algebra on some Hilbert space H and N⊆B(H) is sufficiently close to M, then there is a unitary u on H close to the identity operator with uMu∗=N. This provides the first nonamenable class of von Neumann algebras satisfying Kadison and Kastler’s conjecture. We also obtain stability results for crossed products L<sup>∞</sup>(X,μ)⋊Γ whenever the comparison map from the bounded to usual group cohomology vanishes in degree 2 for the module L<sup>2</sup>(X,μ). In this case, any von Neumann algebra sufficiently close to such a crossed product is necessarily isomorphic to it. In particular, this result applies when Γ is a free group

    Similar works