706 research outputs found

    Observations of isoprene, methacrolein (MAC) and methyl vinyl ketone (MVK) at a mountain site in Hong Kong

    Get PDF
    A field campaign was carried out in September-November 2010 near the summit of Mt. Tai Mo Shan in Hong Kong. Isoprene, methyl vinyl ketone (MVK) and methacrolein (MAC) were measured. The average isoprene mixing ratio was 109 pptv, and the average MAC and MVK levels were 68 pptv and 164 pptv, respectively. The average daytime levels of isoprene (14920 pptv, average95% confidence interval, p<0.01), MAC (709 pptv, p<0.01) and MVK (16922 pptv, p<0.1) were significantly higher than the average nighttime values (205 pptv, 498 pptv and 13925 pptv, respectively). The relationship between MVK and MAC indicated that nearby isoprene oxidation dominated their daytime abundances, while NO3 chemistry and regional transport of anthropogenic sources from inland Pearl River Delta region could explain the higher MVK to MAC ratios at night. Correlation analysis of [MVK]/[isoprene] versus [MAC]/[isoprene] found that the isoprene photochemical ages were between 10 and 64min. Regression analysis of total O3 (O3+NO2) versus MVK resulted in an estimated contribution of isoprene oxidation to ozone production of 12.5%, consistent with the simulated contribution of 10-11% by an observation-based model. © 2012 American Geophysical Union. All Rights Reserved

    Regional and local contributions to ambient non-methane volatile organic compounds at a polluted rural/coastal site in Pearl River Delta, China

    Get PDF
    Identification of major sources of airborne pollutants and their contribution to pollutant loadings are critical in developing effective pollution control and mitigation strategies. In this study, a comprehensive dataset of non-methane volatile organic compounds (NMVOCs) collected from August 2001 to December 2002 at a polluted rural/coastal site in the Pearl River Delta (PRD) is analyzed to assess the relative contributions of major pollution sources to ambient NMVOC mixing ratios. A unique approach based on emission ratios of individual chemical species was used to classify the bulk air samples in order to apportion regional and local source contributions to the measured mixing ratios. The collected air samples fell into four major groups, including air masses from the inner PRD region and Hong Kong (HK) urban area. To estimate the source apportionment of NMVOCs, a principal component analysis/absolute principal component scores receptor model was applied to the classified data points. The results indicate that the regional and local source contributions to ambient NMVOC levels at the site were significantly different due to the differences in local versus regional energy use and industrial activities. For air masses originating from HK, vehicular emissions accounted for approximately 39% of the total NMVOC levels, followed by industrial emissions (35%), gasoline evaporation (14%) and commercial/domestic liquefied petroleum gas/natural gas use (12%). By contrast, for air masses originating from the PRD the industrial emissions accounted for 43% of the total NMVOC burden, followed by vehicular emissions (32%) and biomass burning (25%). In particular, the higher regional contribution of biomass burning found in this study as compared to existing emission inventories suggests that further efforts are necessary to refine the emission inventories of NMVOCs in the PRD region. © 2006 Elsevier Ltd. All rights reserved

    C1-C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment

    Get PDF
    We present measurements of C1-C8 volatile organic compounds (VOCs) at four sites ranging from urban to rural areas in Hong Kong from September 2002 to August 2003. A total of 248 ambient VOC samples were collected. As expected, the urban and sub-urban sites generally gave relatively high VOC levels. In contrast, the average VOC levels were the lowest in the rural area. In general, higher mixing ratios were observed during winter/spring and lower levels during summer/fall because of seasonal variations of meteorological conditions. A variation of the air mass composition from urban to rural sites was observed. High ratios of ethyne/CO (5.6 pptv/ppbv) and propane/ethane (0.50 pptv/pptv) at the rural site suggested that the air masses over the territory were relatively fresh as compared to other remote regions. The principal component analysis (PCA) with absolute principal component scores (APCS) technique was applied to the VOC data in order to identify and quantify pollution sources at different sites. These results indicated that vehicular emissions made a significant contribution to ambient non-methane VOCs (NMVOCs) levels in urban areas (65±36%) and in sub-urban areas (50±28% and 53±41%). Other sources such as petrol evaporation, industrial emissions and solvent usage also played important roles in the VOC emissions. At the rural site, almost half of the measured total NMVOCs were due to combustion sources (vehicular and/or biomass/biofuel burning). Petrol evaporation, solvent usage, industrial and biogenic emissions also contributed to the atmospheric NMVOCs. The source apportionment results revealed a strong impact of anthropogenic VOCs to the atmosphere of Hong Kong in both urban/sub-urban and rural areas. © 2006 Elsevier Ltd. All rights reserved
    corecore