114 research outputs found

    Kinetic Density Functional Theory: A microscopic approach to fluid mechanics

    Full text link
    In the present paper we give a brief summary of some recent theoretical advances in the treatment of inhomogeneous fluids and methods which have applications in the study of dynamical properties of liquids in situations of extreme confinement, such as nanopores, nanodevices, etc. The approach obtained by combining kinetic and density functional methods is microscopic, fully self-consistent and allows to determine both configurational and flow properties of dense fluids. The theory predicts the correct hydrodynamic behavior and provides a practical and numerical tool to determine how the transport properties are modified when the length scales of the confining channels are comparable with the size of the molecules. The applications range from the dynamics of simple fluids under confinement, to that of neutral binary mixtures and electrolytes where the theory in the limit of slow gradients reproduces the known phenomenological equations such as the Planck-Nernst-Poisson and the Smoluchowski equations. The approach here illustrated allows for fast numerical solution of the evolution equations for the one-particle phase-space distributions by means of the weighted density lattice Boltzmann method and is particularly useful when one considers flows in complex geometries.Comment: 14 page

    Multicomponent Diffusion in Nanosystems

    Full text link
    We present the detailed analysis of the diffusive transport of spatially inhomogeneous fluid mixtures and the interplay between structural and dynamical properties varying on the atomic scale. The present treatment is based on different areas of liquid state theory, namely kinetic and density functional theory and their implementation as an effective numerical method via the Lattice Boltzmann approach. By combining the first two methods it is possible to obtain a closed set of kinetic equations for the singlet phase space distribution functions of each species. The interactions among particles are considered within a self-consistent approximation and the resulting effective molecular fields are analyzed. We focus on multispecies diffusion in systems with short-range hard-core repulsion between particles of unequal sizes and weak attractive long-range interactions. As a result, the attractive part of the potential does not contribute explicitly to viscosity but to diffusivity and the thermodynamic properties. Finally, we obtain a practical scheme to solve the kinetic equations by employing a discretization procedure derived from the Lattice Boltzmann approach. Within this framework, we present numerical data concerning the mutual diffusion properties both in the case of a quiescent bulk fluid and shear flow inducing Taylor dispersion.Comment: 19 pages + 5 figure

    Electro-osmotic flow in coated nanocapillaries: a theoretical investigation

    Full text link
    Motivated by recent experiments, we present a theoretical investigation of how the electro-osmotic flow occurring in a capillary is modified when its charged surfaces are coated by charged polymers. The theoretical treatment is based on a three dimensional model consisting of a ternary fluid-mixture, representing the solvent and two species for the ions, confined between two parallel charged plates decorated by a fixed array of scatterers representing the polymer coating. The electro-osmotic flow, generated by a constant electric field applied in a direction parallel to the plates, is studied numerically by means of Lattice Boltzmann simulations. In order to gain further understanding we performed a simple theoretical analysis by extending the Stokes-Smoluchowski equation to take into account the porosity induced by the polymers in the region adjacent the walls. We discuss the nature of the velocity profiles by focusing on the competing effects of the polymer charges and the frictional forces they exert. We show evidence of the flow reduction and of the flow inversion phenomenon when the polymer charge is opposite to the surface charge. By using the density of polymers and the surface charge as control variables, we propose a phase diagram that discriminates the direct and the reversed flow regimes and determine its dependence on the ionic concentration.Comment: 15 pages, 6 figures in Physical Chemistry Chemical Physics, 201

    Steric modulation of ionic currents in DNA translocation through nanopores

    Full text link
    Ionic currents accompanying DNA translocation strongly depend on molarity of the electrolyte solution and the shape and surface charge of the nanopore. By means of the Poisson-Nernst-Planck equations it is shown how conductance is modulated by the presence of the DNA intruder and as a result of competing electrostatic and confinement factors. The theoretical results reproduce quantitatively the experimental ones and are summarized in a conductance diagram that allows distinguishing the region of reduced conductivity from the region of enhanced conductivity as a function of molarity and the pore dimension.Comment: 22 pages, 7 figure
    • …
    corecore