45 research outputs found
Early Myeloid Dendritic Cell Dysregulation is Predictive of Disease Progression in Simian Immunodeficiency Virus Infection
Myeloid dendritic cells (mDC) are lost from blood in individuals with human immunodeficiency virus (HIV) infection but the mechanism for this loss and its relationship to disease progression are not known. We studied the mDC response in blood and lymph nodes of simian immunodeficiency virus (SIV)-infected rhesus macaques with different disease outcomes. Early changes in blood mDC number were inversely correlated with virus load and reflective of eventual disease outcome, as animals with stable infection that remained disease-free for more than one year had average increases in blood mDC of 200% over preinfection levels at virus set-point, whereas animals that progressed rapidly to AIDS had significant loss of mDC at this time. Short term antiretroviral therapy (ART) transiently reversed mDC loss in progressor animals, whereas discontinuation of ART resulted in a 3.5-fold increase in mDC over preinfection levels only in stable animals, approaching 10-fold in some cases. Progressive SIV infection was associated with increased CCR7 expression on blood mDC and an 8-fold increase in expression of CCL19 mRNA in lymph nodes, consistent with increased mDC recruitment. Paradoxically, lymph node mDC did not accumulate in progressive infection but rather died from caspase-8-dependent apoptosis that was reduced by ART, indicating that increased recruitment is offset by increased death. Lymph node mDC from both stable and progressor animals remained responsive to exogenous stimulation with a TLR7/8 agonist. These data suggest that mDC are mobilized in SIV infection but that an increase in the CCR7-CCL19 chemokine axis associated with high virus burden in progressive infection promotes exodus of activated mDC from blood into lymph nodes where they die from apoptosis. We suggest that inflamed lymph nodes serve as a sink for mDC through recruitment, activation and death that contributes to AIDS pathogenesis
Blocking TLR7- and TLR9-mediated IFN-Ξ± Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection
Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-Ξ± that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-Ξ±, albeit at low levels. pDC mediate a marked but transient IFN-Ξ± response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-Ξ± response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-Ξ± production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-Ξ± production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-Ξ± production may not reduce HIV-associated immunopathology. Β© 2013 Kader et al
High-Level Antigen Expression and Sustained Antigen Presentation in Dendritic Cells Nucleofected with Wild-Type Viral mRNA but Not DNAβΏ
Dendritic cells (DC) are potent antigen-presenting cells that hold promise as cell-based therapeutic vaccines for infectious diseases and cancer. Ideally, DC would be engineered to express autologous viral or tumor antigens to ensure the presentation of relevant antigens to host T cells in vivo; however, expression of wild-type viral genes in primary cell lines can be problematic. Nucleofection is an effective means of delivering transgenes to primary cell lines, but its use in transfecting DNA or mRNA into DC has not been widely investigated. We show that nucleofection is a superior means of transfecting human and monkey monocyte-derived DC with DNA and mRNA compared to lipofection and conventional electroporation. However, the delivery of DNA and mRNA had significantly different outcomes in transfected DC. DC nucleofected with DNA encoding green fluorescent protein (GFP) had poor antigen expression and viability and were refractory to maturation with CD40 ligand. In contrast, >90% of DC expressed uniform and high levels of GFP from 3 h to 96 h postnucleofection with mRNA while maintaining a normal maturation response to CD40 ligation. Monkey DC nucleofected with wild-type, non-codon-optimized mRNA encoding simian immunodeficiency virus Gag stimulated robust antigen-specific effector T-cell responses at 24 h and 48 h postnucleofection, reflecting sustained antigen presentation in transfected DC, whereas no detectable T-cell response was noted when DC were nucleofected with DNA encoding the same Gag sequence. These data indicate that mRNA nucleofection may be an optimal means of transfecting DC with autologous tumor or viral antigen for DC-based immunotherapy
Human infection with highly pathogenic H5N1 influenza virus
Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of H5N1 influenza viruses and their capacity for transmission from birds to human beings has raised worldwide concern about an impending human influenza pandemic similar to the notorious H1N1 Spanish influenza of 1918. Since many aspects of H5N1 influenza research are rapidly evolving, we aim in this Seminar to provide an up-to-date discussion on select topics of interest to influenza clinicians and researchers. We summarise the clinical features and diagnosis of infection and present therapeutic options for H5N1 infection of people. We also discuss ideas relating to virus transmission, host restriction, and pathogenesis. Finally, we discuss vaccine development in view of the probable importance of vaccination in pandemic contro