1,944 research outputs found
Covalently Binding the Photosystem I to Carbon Nanotubes
We present a chemical route to covalently couple the photosystem I (PS I) to
carbon nanotubes (CNTs). Small linker molecules are used to connect the PS I to
the CNTs. Hybrid systems, consisting of CNTs and the PS I, promise new
photo-induced transport phenomena due to the outstanding optoelectronic
properties of the robust cyanobacteria membrane protein PS I
Enhancement of quantum dot peak-spacing fluctuations in the fractional q uantum Hall regime
The fluctuations in the spacing of the tunneling resonances through a quantum
dot have been studied in the quantum Hall regime. Using the fact that the
ground-state of the system is described very well by the Laughlin wavefunction,
we were able to determine accurately, via classical Monte Carlo calculations,
the amplitude and distribution of the peak-spacing fluctuations.
Our results clearly demonstrate a big enhancement of the fluctuations as the
importance of the electronic correlations increases, namely as the density
decreases and filling factor becomes smaller.
We also find that the distribution of the fluctuations approaches a Gaussian
with increasing density of random potentials.Comment: 6 pages, 3 figures all in gzipped tarred fil
Josephson Junctions defined by a Nano-Plough
We define superconducting constrictions by ploughing a deposited Aluminum
film with a scanning probe microscope. The microscope tip is modified by
electron beam deposition to form a nano-plough of diamond-like hardness, what
allows the definition of highly transparent Josephson junctions. Additionally a
dc-SQUID is fabricated to verify appropriate functioning of the junctions. The
devices are easily integrated in mesoscopic devices as local radiation sources
and can be used as tunable on-chip millimeter wave sources
Transmission through a n interacting quantum dot in the Coulomb blockade regime
The influence of electron-electron (e-e) interactions on the transmission
through a quantum dot is investigated numerically for the Coulomb blockade
regime. For vanishing magnetic fields, the conductance peak height statistics
is found to be independent of the interactions strength. It is identical to the
statistics predicted by constant interaction single electron random matrix
theory and agrees well with recent experiments. However, in contrast to these
random matrix theories, our calculations reproduces the reduced sensitivity to
magnetic flux observed in many experiments. The relevant physics is traced to
the short range Coulomb correlations providing thus a unified explanation for
the transmission statistics as well as for the large conductance peak spacing
fluctuations observed in other experiments.Comment: Final version as publishe
Statistics of conductance oscillations of a quantum dot in the Coulomb-blockade regime
The fluctuations and the distribution of the conductance peak spacings of a
quantum dot in the Coulomb-blockade regime are studied and compared with the
predictions of random matrix theory (RMT). The experimental data were obtained
in transport measurements performed on a semiconductor quantum dot fabricated
in a GaAs-AlGaAs heterostructure. It is found that the fluctuations in the peak
spacings are considerably larger than the mean level spacing in the quantum
dot. The distribution of the spacings appears Gaussian both for zero and for
non-zero magnetic field and deviates strongly from the RMT-predictions.Comment: 7 pages, 4 figure
Addition Spectra of Chaotic Quantum Dots: Interplay between Interactions and Geometry
We investigate the influence of interactions and geometry on ground states of
clean chaotic quantum dots using the self-consistent Hartree-Fock method. We
find two distinct regimes of interaction strength: While capacitive energy
fluctuations follow approximately a random matrix prediction for
weak interactions, there is a crossover to a regime where is
strongly enhanced and scales roughly with interaction strength. This
enhancement is related to the rearrangement of charges into ordered states near
the dot edge. This effect is non-universal depending on dot shape and size. It
may provide additional insight into recent experiments on statistics of Coulomb
blockade peak spacings.Comment: 4 pages, final version to appear in Phys. Rev. Let
Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator
We present measurements on microwave spectroscopy on a double quantum dot
with an on-chip microwave source. The quantum dots are realized in the
two-dimensional electron gas of an AlGaAs/GaAs heterostructure and are weakly
coupled in series by a tunnelling barrier forming an 'ionic' molecular state.
We employ a Josephson oscillator formed by a long Nb/Al-AlO/Nb junction as
a microwave source. We find photon-assisted tunnelling sidebands induced by the
Josephson oscillator, and compare the results with those obtained using an
externally operated microwave source.Comment: 6 pages, 4 figure
Statistics of Coulomb blockade peak spacings for a partially open dot
We show that randomness of the electron wave functions in a quantum dot
contributes to the fluctuations of the positions of the conductance peaks. This
contribution grows with the conductance of the junctions connecting the dot to
the leads. It becomes comparable with the fluctuations coming from the
randomness of the single particle spectrum in the dot while the Coulomb
blockade peaks are still well-defined. In addition, the fluctuations of the
peak spacings are correlated with the fluctuations of the conductance peak
heights.Comment: 13 pages, 1 figur
Finite temperature effects in Coulomb blockade quantum dots and signatures of spectral scrambling
The conductance in Coulomb blockade quantum dots exhibits sharp peaks whose
spacings fluctuate with the number of electrons. We derive the
temperature-dependence of these fluctuations in the statistical regime and
compare with recent experimental results. The scrambling due to Coulomb
interactions of the single-particle spectrum with the addition of an electron
to the dot is shown to affect the temperature-dependence of the peak spacing
fluctuations. Spectral scrambling also leads to saturation in the temperature
dependence of the peak-to-peak correlator, in agreement with recent
experimental results. The signatures of scrambling are derived using discrete
Gaussian processes, which generalize the Gaussian ensembles of random matrices
to systems that depend on a discrete parameter -- in this case, the number of
electrons in the dot.Comment: 14 pages, 4 eps figures included, RevTe
Quantum Dots with Disorder and Interactions: A Solvable Large-g Limit
We show that problem of interacting electrons in a quantum dot with chaotic
boundary conditions is solvable in the large-g limit, where g is the
dimensionless conductance of the dot. The critical point of the
theory (whose location and exponent are known exactly) that separates strong
and weak-coupling phases also controls a wider fan-shaped region in the
coupling-1/g plane, just as a quantum critical point controls the fan in at
T>0. The weak-coupling phase is governed by the Universal Hamiltonian and the
strong-coupling phase is a disordered version of the Pomeranchuk transition in
a clean Fermi liquid. Predictions are made in the various regimes for the
Coulomb Blockade peak spacing distributions and Fock-space delocalization
(reflected in the quasiparticle width and ground state wavefunction).Comment: 4 pages, 2 figure
- …