18 research outputs found

    Comparison of Electron-Atom Collision Parameters for S to P Transitions under Reversal of Energy Transfer

    Get PDF
    Inelastic and superelastic electron scattering from the optically prepared 32P3/2 state of sodium has enabled atomic collision parameters to be deduced for the 4S-3P deexcitation and the 3S-3P excitation processes. These data are compared with convergent close coupling and second order distorted wave Born calculations. For excitation, both theories agree with experiment, whereas for deexcitation the close coupling theory is in better agreement. A long-standing proposal relating to the sign of the transferred angular momentum is not supported

    Comparison of Electron-Atom Collision Parameters for S to P Transitions under Reversal of Energy Transfer

    Get PDF
    Inelastic and superelastic electron scattering from the optically prepared 32P3/2 state of sodium has enabled atomic collision parameters to be deduced for the 4S-3P deexcitation and the 3S-3P excitation processes. These data are compared with convergent close coupling and second order distorted wave Born calculations. For excitation, both theories agree with experiment, whereas for deexcitation the close coupling theory is in better agreement. A long-standing proposal relating to the sign of the transferred angular momentum is not supported

    Absorption spectrum in the wings of the potassium second resonance doublet broadened by helium

    Full text link
    We have measured the reduced absorption coefficients occurring in the wings of the potassium 4S-5P doublet lines at 404.414 nm and at 404.720 nm broadened by helium gas at pressures of several hundred Torr. At the experimental temperature of 900 K, we have detected a shoulder-like broadening feature on the blue wing of the doublet which is relatively flat between 401.8 nm and 402.8 nm and which drops off rapidly for shorter wavelengths, corresponding to absorption from the X doublet Sigma+ state to the C doublet Sigma+ state of the K-He quasimolecule. The accurate measurements of the line profiles in the present work will sharply constrain future calculations of potential energy surfaces and transition dipole moments correlating to the asymptotes He-K(5p), He-K(5s), and He-K(3d).Comment: 2 figure

    Theoretical study of the absorption spectra of the sodium dimer

    Full text link
    Absorption of radiation from the sodium dimer molecular states correlating to Na(3s)-Na(3s) is investigated theoretically. Vibrational bound and continuum transitions from the singlet X Sigma-g+ state to the first excited singlet A Sigma-u+ and singlet B Pi-u states and from the triplet a Sigma-u+ state to the first excited triplet b Sigma-g+ and triplet c Pi-g states are studied quantum-mechanically. Theoretical and experimental data are used to characterize the molecular properties taking advantage of knowledge recently obtained from ab initio calculations, spectroscopy, and ultra-cold atom collision studies. The quantum-mechanical calculations are carried out for temperatures in the range from 500 to 3000 K and are compared with previous calculations and measurements where available.Comment: 19 pages, 8 figures, revtex, eps

    Transfer of angular momentum in electron collisions with alkali atoms

    No full text
    Measurements of the transfer of angular momentum to rubidium and sodium atoms in collisions with electrons are reported. For excitation of the rubidium 52S1/2–52 P3/2 transition, it is found that existing first order distorted wave Born approximation calculations show poor agreement with the data and that a model which includes the relativistic interaction between the electrons and the atoms in the potential is needed. For the de-excitation of the sodium 42S1/2 –32 P3/2 transition, a long standing proposal relating to the sign of the transferred angular momentum is not supported except at small scattering angles. A convergent close coupling calculation displays excellent agreement with the measured data

    Electron superelastic scattering from states of atomic sodium and rubidium

    No full text
    This paper reports on the extension of the electron superelastic scattering technique to three new situations. The first considers scattering from the 32P3/2 level of Na that has been excited by two laser modes tuned, respectively, to the transitions from the two hyperfine states of the 32S1/2 ground level. Both coherent and noncoherent modes are treated in a full quantum electrodynamic model of the laser excitation. Under certain conditions, the time-averaged probability of finding an atom in the 32P3/2 level exceeds 0.5. The second situation is electron superelastic scattering from the 32D5/2 level of Na that has been resonantly excited from the ground level via a resonant intermediate level. With the first observation of superelastically scattered electrons from this higher lying level recently recorded, this paper considers the extension of the quantum electrodynamics (QED) model to describe the optical excitation process. Application of superelastic scattering to the 52S1/2–52P3/2 transition of Rb is the third situation considered. The superelastic scattering formalism is extended to allow for a nonzero spin flip cross section for this transition. The resulting optical pumping terms are calculated using the QED model and the method of their determination for the superelastic scattering experiment described. The experimental design necessary to measure all of the collision parameters for this transition is discussed
    corecore