3 research outputs found

    Computational Investigation of Furnace Wall for Silica Ramming Mass with FDM

    Full text link
    Furnaces are useful for melting different materials for casting process. In this research paper, we had done advanced heat transfer analysis of induction furnace wall made of silica ramming mass using explicit finite difference method. We have divided actual geometry of furnace refractory wall into 14 elements and 24 nodes. We have derived explicit finite difference equations for all 24 nodes. We have calculated temperature distribution and thermal stress distribution for all different nodes with respect to time. We have plotted graphs for maximum temperature v/s time and maximum stress v/s time. We found that results indicate the effect of thermal fatigue in the induction furnace wall for silica ramming mass. The analysis is very helpful in understanding how thermal fatigue failure of refractory wall happens

    Stress life analysis of induction furnace wall for magnesia ramming mass

    No full text
    Furnaces are most commonly used for melting of materials. Induction furnaces are more beneficial as no fuel is required. It is a problem to find life cycle of Induction Melting Furnace Wall under load variation. The induction melting furnace wall is made of magnesia ramming mass which is one kind of refractory material. The failure occurs due to cyclic thermal stresses due to heating and cooling cycles. Temperature distribution and thermal stress distribution fields of the induction melting furnace refractory wall were calculated by using explicit finite difference analysis based on the physical description of its failure under low cycle thermal fatigue conditions. The life span of the refractory wall is required to be found out by means of critical thermal stresses created inside the refractory wall of induction melting furnace wall from modified S - log N Curve
    corecore