4,608 research outputs found
Unsupervised Neural Machine Translation with SMT as Posterior Regularization
Without real bilingual corpus available, unsupervised Neural Machine
Translation (NMT) typically requires pseudo parallel data generated with the
back-translation method for the model training. However, due to weak
supervision, the pseudo data inevitably contain noises and errors that will be
accumulated and reinforced in the subsequent training process, leading to bad
translation performance. To address this issue, we introduce phrase based
Statistic Machine Translation (SMT) models which are robust to noisy data, as
posterior regularizations to guide the training of unsupervised NMT models in
the iterative back-translation process. Our method starts from SMT models built
with pre-trained language models and word-level translation tables inferred
from cross-lingual embeddings. Then SMT and NMT models are optimized jointly
and boost each other incrementally in a unified EM framework. In this way, (1)
the negative effect caused by errors in the iterative back-translation process
can be alleviated timely by SMT filtering noises from its phrase tables;
meanwhile, (2) NMT can compensate for the deficiency of fluency inherent in
SMT. Experiments conducted on en-fr and en-de translation tasks show that our
method outperforms the strong baseline and achieves new state-of-the-art
unsupervised machine translation performance.Comment: To be presented at AAAI 2019; 9 pages, 4 figure
- …