7,144 research outputs found

    Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field

    Full text link
    The thermal entanglement in a two-qubit Heisenberg \emph{XXZ} spin chain is investigated under an inhomogeneous magnetic field \emph{b}. We show that the ground-state entanglement is independent of the interaction of \emph{z}-component JzJ_{z}. The thermal entanglement at the fixed temperature can be enhanced when JzJ_{z} increases. We strictly show that for any temperature \emph{T} and JzJ_{z} the entanglement is symmetric with respect to zero inhomogeneous magnetic field, and the critical inhomogeneous magnetic field bcb_{c} is independent of JzJ_{z}. The critical magnetic field BcB_{c} increases with the increasing āˆ£bāˆ£|b| but the maximum entanglement value that the system can arrive becomes smaller.Comment: 5 EPS figure

    Concerted Complex Assembly and GTPase Activation in the Chloroplast Signal Recognition Particle

    Get PDF
    The universally conserved signal recognition particle (SRP) and SRP receptor (SR) mediate the cotranslational targeting of proteins to cellular membranes. In contrast, a unique chloroplast SRP in green plants is primarily dedicated to the post-translational targeting of light harvesting chlorophyll a/b binding (LHC) proteins. In both pathways, dimerization and activation between the SRP and SR GTPases mediate the delivery of cargo; whether and how the GTPase cycle in each system adapts to its distinct substrate proteins were unclear. Here, we show that interactions at the active site essential for GTPase activation in the chloroplast SRP and SR play key roles in the assembly of the GTPase complex. In contrast to their cytosolic homologues, GTPase activation in the chloroplast SRPā€“SR complex contributes marginally to the targeting of LHC proteins. These results demonstrate that complex assembly and GTPase activation are highly coupled in the chloroplast SRP and SR and suggest that the chloroplast GTPases may forego the GTPase activation step as a key regulatory point. These features may reflect adaptations of the chloroplast SRP to the delivery of their unique substrate protein
    • ā€¦
    corecore