13 research outputs found

    Changes in Adipokines following Laparoscopic Roux-en-Y Gastric Bypass Surgery in Chinese Individuals with Type 2 Diabetes Mellitus and BMI of 22–30 kg·m −2

    Get PDF
    Aims. Although altered endocrine changes following bariatric surgery in morbidly obese patients with diabetes have been demonstrated by previous studies, little is known about their effects on low BMI patients of T2DM. We investigated the changes in adipokines and sICAM-1 in Chinese subjects with low BMI and T2DM after LRYGB and explored their relationship with postsurgical insulin sensitivity. Methods. Plasma levels of adiponectin, sICAM-1, fasting glucose, glycated hemoglobin, and fasting insulin and serum levels of visfatin were measured before and at three months after LRYGB in 33 T2DM patients with BMI of 22–30 kg·m−2. Results. Significant reductions in anthropometric measurements and indicators of glucose and lipid metabolism and moderate reductions in insulin resistance and fasting insulin were observed at three months after LRYGB. Postoperative adiponectin level () was increased compared to the preoperative level, whereas visfatin () and sICAM-1 () were lower than that before surgery. Serum adiponectin negatively correlated with HOMA-IR and FIns both preoperatively and at three months after surgery, and visfatin positively correlated with HOMA-IR and FIns both preoperatively and postoperatively. Conclusion. Changes in adipokines were related to an improvement in postsurgical insulin sensitivity, which was predicted by weight loss after LRYGB even in low BMI patients with T2DM

    Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation

    Get PDF
    Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1α is recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1α and the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1α activation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1α and induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1α activation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1α complex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1α complex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation

    Enhanced Healing of Diabetic Wounds by Subcutaneous Administration of Human Umbilical Cord Derived Stem Cells and Their Conditioned Media

    Get PDF
    Objective. Mesenchymal stem cells (MSCs) isolated from the umbilical cord and their conditioned media (CM) can be easily obtained and refined compared with stem cells from other sources. Here, we explore the possibility of the benefits of these cells in healing diabetic wounds. Methodology and Results. Delayed wound healing animal models were established by making a standard wound on the dorsum of eighteen db/db mice, which were divided into three groups with six mice in each: groups I, II, and III received PBS, UC-MSC, and CM, respectively. UC-MSC and their CM significantly accelerated wound closure compared to PBS-treated wounds, and it was most rapid in CM-injected wounds. In day-14 wounds, significant difference in capillary densities among the three groups was noted (n=6; P<0.05), and higher levels of VEGF, PDGF, and KGF expression in the CM- and UC-MSC-injected wounds compared to the PBS-treated wounds were seen. The expression levels of PDGF-β and KGF were higher in CM-treated wounds than those in UC-MSC-treated wounds. Conclusion. Both the transplantation of UC-MSC and their CM are beneficial to diabetic wound healing, and CM has been shown to be therapeutically better than UC-MSC, at least in the context of diabetic wound healing

    Inhibition of 4-nitroquinoline-1-oxide-induced oral carcinogenesis by dietary calcium.

    No full text
    Calcium is a strong inducer of keratinocyte differentiation. We have previously demonstrated that extracellular calcium promotes keratinocyte differentiation via E-cadherin-catenin complex-mediated phospholipase C-γ1 (PLC-γ1) activation in the plasma membrane. However, it is unclear whether dietary calcium regulates keratinocyte proliferation, differentiation or carcinogenesis. To address this issue, the rates of oral tumor and levels of proliferation and differentiation in the oral epithelium were assessed in mice on different calcium diets and the carcinogen 4-nitroquinoline-1-oxide. The results showed that mice on the high calcium diet had lower rates of oral tumors, lower levels of proliferation and higher levels of differentiation in the normal oral epithelium than those on the normal calcium diet. Higher levels of E-cadherin, β-catenin, p120-catenin (p120), epidermal growth factor receptor (EGFR), and calcium and lower levels of PLC-γ1 were also noted in the normal oral epithelium in mice on high calcium diet than the control mice. In contrast, mice on low calcium diet had opposite effects. However, dietary calcium had no effect on the proliferation, differentiation or the levels of E-cadherin, β-catenin, p120, PLC-γ1 and EGFR in oral tumors. These data indicate that dietary calcium increases calcium levels in oral epithelium, suppresses oral carcinogenesis, inhibits proliferation and promotes differentiation of normal oral epithelium. Increased E-cadherin, β-catenin, p120 and EGFR and decreased PLC-γ1 may participate in the inhibitory effect of dietary calcium in oral carcinogenesis

    Phosphoprotein Phosphatase 1 Is Required for Extracellular Calcium-Induced Keratinocyte Differentiation

    No full text
    Extracellular calcium is a major regulator of keratinocyte differentiation in vitro and appears to play that role in vivo, but the mechanism is unclear. We have previously demonstrated that, following calcium stimulation, PIP5K1α is recruited by the E-cadherin-β-catenin complex to the plasma membrane where it provides the substrate PIP2 for both PI3K and PLC-γ1. This signaling pathway is critical for calcium-induced generation of second messengers including IP3 and intracellular calcium and keratinocyte differentiation. In this study, we explored the upstream regulatory mechanism by which calcium activates PIP5K1α and the role of this activation in calcium-induced keratinocyte differentiation. We found that treatment of human keratinocytes in culture with calcium resulted in an increase in serine dephosphorylation and PIP5K1α activation. PP1 knockdown blocked extracellular calcium-induced increase in serine dephosphorylation and activity of PIP5K1α and induction of keratinocyte differentiation markers. Knockdown of PLC-γ1, the downstream effector of PIP5K1α, blocked upstream dephosphorylation and PIP5K1α activation induced by calcium. Coimmunoprecipitation revealed calcium induced recruitment of PP1 to the E-cadherin-catenin-PIP5K1α complex in the plasma membrane. These results indicate that PP1 is recruited to the extracellular calcium-dependent E-cadherin-catenin-PIP5K1α complex in the plasma membrane to activate PIP5K1α, which is required for PLC-γ1 activation leading to keratinocyte differentiation
    corecore