15 research outputs found

    SC-Block: Supervised Contrastive Blocking within Entity Resolution Pipelines

    Full text link
    The goal of entity resolution is to identify records in multiple datasets that represent the same real-world entity. However, comparing all records across datasets can be computationally intensive, leading to long runtimes. To reduce these runtimes, entity resolution pipelines are constructed of two parts: a blocker that applies a computationally cheap method to select candidate record pairs, and a matcher that afterwards identifies matching pairs from this set using more expensive methods. This paper presents SC-Block, a blocking method that utilizes supervised contrastive learning for positioning records in the embedding space, and nearest neighbour search for candidate set building. We benchmark SC-Block against eight state-of-the-art blocking methods. In order to relate the training time of SC-Block to the reduction of the overall runtime of the entity resolution pipeline, we combine SC-Block with four matching methods into complete pipelines. For measuring the overall runtime, we determine candidate sets with 99.5% pair completeness and pass them to the matcher. The results show that SC-Block is able to create smaller candidate sets and pipelines with SC-Block execute 1.5 to 2 times faster compared to pipelines with other blockers, without sacrificing F1 score. Blockers are often evaluated using relatively small datasets which might lead to runtime effects resulting from a large vocabulary size being overlooked. In order to measure runtimes in a more challenging setting, we introduce a new benchmark dataset that requires large numbers of product offers to be blocked. On this large-scale benchmark dataset, pipelines utilizing SC-Block and the best-performing matcher execute 8 times faster than pipelines utilizing another blocker with the same matcher reducing the runtime from 2.5 hours to 18 minutes, clearly compensating for the 5 minutes required for training SC-Block

    The Battleship Approach to the Low Resource Entity Matching Problem

    Full text link
    Entity matching, a core data integration problem, is the task of deciding whether two data tuples refer to the same real-world entity. Recent advances in deep learning methods, using pre-trained language models, were proposed for resolving entity matching. Although demonstrating unprecedented results, these solutions suffer from a major drawback as they require large amounts of labeled data for training, and, as such, are inadequate to be applied to low resource entity matching problems. To overcome the challenge of obtaining sufficient labeled data we offer a new active learning approach, focusing on a selection mechanism that exploits unique properties of entity matching. We argue that a distributed representation of a tuple pair indicates its informativeness when considered among other pairs. This is used consequently in our approach that iteratively utilizes space-aware considerations. Bringing it all together, we treat the low resource entity matching problem as a Battleship game, hunting indicative samples, focusing on positive ones, through awareness of the latent space along with careful planning of next sampling iterations. An extensive experimental analysis shows that the proposed algorithm outperforms state-of-the-art active learning solutions to low resource entity matching, and although using less samples, can be as successful as state-of-the-art fully trained known algorithms

    Product Attribute Value Extraction using Large Language Models

    Full text link
    E-commerce applications such as faceted product search or product comparison are based on structured product descriptions like attribute/value pairs. The vendors on e-commerce platforms do not provide structured product descriptions but describe offers using titles or descriptions. To process such offers, it is necessary to extract attribute/value pairs from textual product attributes. State-of-the-art attribute/value extraction techniques rely on pre-trained language models (PLMs), such as BERT. Two major drawbacks of these models for attribute/value extraction are that (i) the models require significant amounts of task-specific training data and (ii) the fine-tuned models face challenges in generalizing to attribute values not included in the training data. This paper explores the potential of large language models (LLMs) as a training data-efficient and robust alternative to PLM-based attribute/value extraction methods. We consider hosted LLMs, such as GPT-3.5 and GPT-4, as well as open-source LLMs based on Llama2. We evaluate the models in a zero-shot scenario and in a scenario where task-specific training data is available. In the zero-shot scenario, we compare various prompt designs for representing information about the target attributes of the extraction. In the scenario with training data, we investigate (i) the provision of example attribute values, (ii) the selection of in-context demonstrations, and (iii) the fine-tuning of GPT-3.5. Our experiments show that GPT-4 achieves an average F1-score of 85% on the two evaluation datasets while the best PLM-based techniques perform on average 5% worse using the same amount of training data. GPT-4 achieves a 10% higher F1-score than the best open-source LLM. The fine-tuned GPT-3.5 model reaches a similar performance as GPT-4 while being significantly more cost-efficient

    Generative Benchmark Creation for Table Union Search

    Full text link
    Data management has traditionally relied on synthetic data generators to generate structured benchmarks, like the TPC suite, where we can control important parameters like data size and its distribution precisely. These benchmarks were central to the success and adoption of database management systems. But more and more, data management problems are of a semantic nature. An important example is finding tables that can be unioned. While any two tables with the same cardinality can be unioned, table union search is the problem of finding tables whose union is semantically coherent. Semantic problems cannot be benchmarked using synthetic data. Our current methods for creating benchmarks involve the manual curation and labeling of real data. These methods are not robust or scalable and perhaps more importantly, it is not clear how robust the created benchmarks are. We propose to use generative AI models to create structured data benchmarks for table union search. We present a novel method for using generative models to create tables with specified properties. Using this method, we create a new benchmark containing pairs of tables that are both unionable and non-unionable but related. We thoroughly evaluate recent existing table union search methods over existing benchmarks and our new benchmark. We also present and evaluate a new table search methods based on recent large language models over all benchmarks. We show that the new benchmark is more challenging for all methods than hand-curated benchmarks, specifically, the top-performing method achieves a Mean Average Precision of around 60%, over 30% less than its performance on existing manually created benchmarks. We examine why this is the case and show that the new benchmark permits more detailed analysis of methods, including a study of both false positives and false negatives that were not possible with existing benchmarks

    Product Information Extraction using ChatGPT

    Full text link
    Structured product data in the form of attribute/value pairs is the foundation of many e-commerce applications such as faceted product search, product comparison, and product recommendation. Product offers often only contain textual descriptions of the product attributes in the form of titles or free text. Hence, extracting attribute/value pairs from textual product descriptions is an essential enabler for e-commerce applications. In order to excel, state-of-the-art product information extraction methods require large quantities of task-specific training data. The methods also struggle with generalizing to out-of-distribution attributes and attribute values that were not a part of the training data. Due to being pre-trained on huge amounts of text as well as due to emergent effects resulting from the model size, Large Language Models like ChatGPT have the potential to address both of these shortcomings. This paper explores the potential of ChatGPT for extracting attribute/value pairs from product descriptions. We experiment with different zero-shot and few-shot prompt designs. Our results show that ChatGPT achieves a performance similar to a pre-trained language model but requires much smaller amounts of training data and computation for fine-tuning

    SC-block: Supervised contrastive blocking within entity resolution pipelines

    Full text link
    Millions of websites use the schema.org vocabulary to annotate structured data describing products, local businesses, or events within their HTML pages. Integrating schema.org data from the Semantic Web poses distinct requirements to entity resolution methods: (1) the methods must scale to millions of entity descriptions and (2) the methods must be able to deal with the heterogeneity that results from a large number of data sources. In order to scale to numerous entity descriptions, entity resolution methods combine a blocker for candidate pair selection and a matcher for the fine-grained comparison of the pairs in the candidate set. This paper introduces SC-Block, a blocking method that uses supervised contrastive learning to cluster entity descriptions in an embedding space. The embedding enables SC-Block to generate small candidate sets even for use cases that involve a large number of unique tokens within entity descriptions. To measure the effectiveness of blocking methods for Semantic Web use cases, we present a new benchmark, WDC-Block. WDC-Block requires blocking product offers from 3,259 e-shops that use the schema.org vocabulary. The benchmark has a maximum Cartesian product of 200 billion pairs of offers and a vocabulary size of 7 million unique tokens. Our experiments using WDC-Block and other blocking benchmarks demonstrate that SC-Block produces candidate sets that are on average 50% smaller than the candidate sets generated by competing blocking methods. Entity resolution pipelines that combine SC-Block with state-of-the-art matchers finish 1.5 to 4 times faster than pipelines using other blockers, without any loss in F1 score
    corecore