19 research outputs found

    Histology of pleural tumors and cytology of MPE from the mice in NS group.

    No full text
    <p>(A) Hematoxylin-eosin staining of parietal pleura from MPE model (Section ×200) indicated that pleural tumors consisted of adenocarcinomatous cells. (B) Hematoxylin-eosin staining of tumor on the pleural surface from MPE model (Section ×200). (C) Wright’s-Giemsa stain of cells from pleural effusion of MPE model showed LLC cells with large nuclei and visible nucleoli (arrow). MPE: malignant pleural effusion.</p

    Immunohistochemistry staining of VEGF-C expression in the pleural tumors.

    No full text
    <p>Positive immunohistochemistry staining of VEGF-C was shown as brown part in each figure. Expression of VEGF-C was accessed by the percentage of positive carcinoma cells and the staining intensity. The positive staining of VEGF-C in NS group (A) and L-ES group (B) indicated high expression of VEGF-C in these groups. Low expression of VEGF-C was shown in Bevacizumab group (C) and H-ES group (D). The expression of VEGF-C was significantly decreased in H-ES group compared with that in NS group or L-ES group or Bevacizumab group.Columns: mean value of each group, bars: ±SD. ***P<0.001, **P<0.01, *P<0.05. ns: no significant difference.</p

    Immunohistochemistry staining of VEGF-A expression in the pleural tumors.

    No full text
    <p>Positive immunohistochemistry staining of VEGF-A was shown as brown part in each figure. Expression of VEGF-A was accessed by the percentage of positive carcinoma cells and the staining intensity. The positive staining of VEGF-A in NS group (A) and L-ES group (B) indicated high expression of VEGF-A in these groups. Low expression of VEGF-A was shown in Bevacizumab group (C) and H-ES group (D). The expression of VEGF-A was significantly decreased in H-ES group compared with that in NS group or L-ES group, and there is no significant difference between Bevacizumab group and H-ES group (E). Columns: mean value of each group, bars: ±SD. ***P<0.001, **P<0.01, *P<0.05. ns: no significant difference.</p

    CT scanning of MPE formation in four groups.

    No full text
    <p>CT images of four groups showed that bilateral pleural effusion was visible in the mice treated with NS (A) or L-ES (B),unilateral pleural effusion was observed in Bevacizumab group (C), and effusion was not obvious in H-ES group (D). The mean volume of pleural effusion was significantly decreased in the H-ES group compared with that in the NS group or L-ES group, but there is no significant difference between H-ES group and Bevacizumab group (E). MPE: malignant pleural effusion. Columns: mean value of each group, bars: ±SD. ***P<0.001, **P<0.01, *P<0.05. ns: no significant difference.</p

    Raman Reporter-Coupled Ag<sub>core</sub>@Au<sub>shell</sub> Nanostars for <i>in Vivo</i> Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers

    No full text
    Noble-metal nanomaterials were widely investigated as theranostic systems for surface enhanced Raman scattering (SERS) imaging, and also for photothermal therapy (PTT) of cancers. However, it was still a major challenge to explore multifunctional nanoprobes with high performance, high stability, and low toxicity. In this work, Raman reporter (DTTC)-coupled Ag<sub>core</sub>@Au<sub>shell</sub> nanostars (Ag@Au-DTTC) were synthesized and investigated for <i>in vivo</i> improved SERS imaging and near-infrared (NIR)-triggered PTT of breast cancers. By the two-step coupling of DTTC, the SERS signal was improved obviously, and the cytotoxicity of nanoparticles was also decreased by coating Au nanostars onto Ag nanoparticles. The as-prepared Ag@Au-DTTC nanostars showed high photostability and excellent photothermal performance, in which the photothermal conversion efficiency was up to 79.01% under the irradiation of an 808 nm laser. The <i>in vitro</i> and <i>in vivo</i> SERS measurements of Ag@Au-DTTC nanostars showed that the many sharp and narrow Raman peaks located at 508, 782, 844, 1135, 1242, 1331, 1464, 1510, and 1580 cm<sup>–1</sup> could be obviously observed in MCF-7 cells and in MCF-7 tumor-bearing nude mice, compared with that in pure DTTC. In 14-day treatments, the tumor volume of MCF-7 tumor-bearing nude mice injected with Ag@Au-DTTC nanostars and irradiated by an 808 nm laser almost disappeared. This study demonstrated that the as-prepared Ag@Au-DTTC nanostars could be excellent multifunctional agents for improved SERS imaging and NIR-triggered PTT of breast cancers with low risk

    Immunohistochemistry staining of D2-40 for LMVD in the pleural tumors.

    No full text
    <p>Positive immunohistochemistry staining of D2-40 was shown as brown part in each figure. Positive endothelial cells stained by anti-D2-40 antibody were recognized as lymphatic vessels. Lymphatic micro vessel density (LMVD) was counted at Section×200. LMVD in H-ES group (D) was significantly decreased compared with NS group (A) or L-ES group (B) or Bevacizumab group(C). (E): The difference of LMVD on four groups. Columns: mean value of each group, bars: ±SD. ***P<0.001, **P<0.01, *P<0.05. ns: no significant difference.</p

    Immunohistochemistry staining of CD31 for MVD in the pleural tumors.

    No full text
    <p>Positive immunohistochemistry staining of CD31 was shown as brown part in each figure. Micro-vessel density (MVD) was counted at Section×200. Well-formed capillaries were observed in the tumors from NS group (A) and L-ES group (B). Isolated micro-vessels were shown in Bevacizumab group (C) and H-ES group (D). MVD was significantly decreased in H-ES group compared with that in NS group or L-ES group, and there is no significant difference between Bevacizumab group and H-ES group (E).Columns: mean value of each group, bars: ±SD. ***P<0.001, ** P<0.01, *P<0.05. ns: no significant difference.</p

    Selectively Sensitizing Malignant Cells to Photothermal Therapy Using a CD44-Targeting Heat Shock Protein 72 Depletion Nanosystem

    No full text
    Selectively enhance the therapeutic efficacy to malignancy is one of the most important issues for photothermal therapy (PTT). However, most solid tumors, such as triple negative breast cancer (TNBC), do not have identifiable surface markers to distinguish themselves from normal cells, thus it is challenging to selectively identify and eliminate those malignances by PTT. In this report, we hypothesized that, by targeting CD44 (one TNBC-overexpressed surface molecule) and depleting heat shock protein 72 (HSP72, one malignancy-specific-overexpressed thermotolerance-related chaperone) subsequently, the TNBC could be selectively sensitized to PTT and improve the accuracy of treatment. To this end, a rationally designed nanosystem gold nanostar (GNS)/siRNA against HSP72 (siHSP72)/hyaluronic acid (HA) was successfully constructed using a layer-by-layer method. Hydrodynamic diameter and zeta potential analysis demonstrated the formation of GNS/siHSP72/HA having a particle size of 73.2 ± 3.8 nm and a negative surface charge of −18.3 ± 1.6 mV. The CD44-targeting ability of GNS/siHSP72/HA was confirmed by the flow cytometer, confocal microscopic imaging, and competitive binding analysis. The HSP72 silencing efficacy of GNS/siHSP72/HA was ∼95% in complete culture medium. By targeting CD44 and depleting HSP72 sequentially, GNS/siHSP72/HA could selectively sensitize TNBC cells to hyperthermia and enhance the therapeutic efficacy to TNBC with minimal side effect both <i>in vitro</i> and <i>in vivo</i>. Other advantages of GNS/siHSP72/HA included easy synthesis, robust siRNA loading capacity, endosome/lysosome escaping ability, high photothermal conversion efficacy and superior hemo- and biocompatibility

    Highly Robust, Recyclable Displacement Assay for Mercuric Ions in Aqueous Solutions and Living Cells

    No full text
    We designed a recyclable Hg<sup>2+</sup> probe based on Rhodamine B isothiocyanate (RBITC)-poly(ethylene glycol) (PEG)-comodified gold nanoparticles (AuNPs) with excellent robustness, selectivity, and sensitivity. On the basis of a rational design, only Hg<sup>2+</sup> can displace RBITC from the AuNP surfaces, resulting in a remarkable enhancement of RBITC fluorescence initially quenched by AuNPs. To maintain stability and monodispersity of AuNPs in real samples, thiol-terminated PEG was employed to bind with the remaining active sites of AuNPs. Besides, this displacement assay can be regenerated by resupplying free RBITC into the AuNPs solutions that were already used for detecting Hg<sup>2+</sup>. Importantly, the detection limit of this assay for Hg<sup>2+</sup> (2.3 nM) was lower than the maximum limits guided by the United States Environmental Protection Agency as well as that permitted by the World Health Organization. The efficiency of this probe was demonstrated in monitoring Hg<sup>2+</sup> in complex samples such as river water and living cells

    Photosensitizer-Loaded Gold Vesicles with Strong Plasmonic Coupling Effect for Imaging-Guided Photothermal/Photodynamic Therapy

    No full text
    A multifunctional theranostic platform based on photosensitizer-loaded plasmonic vesicular assemblies of gold nanoparticles (GNPs) is developed for effective cancer imaging and treatment. The gold vesicles (GVs) composed of a monolayer of assembled GNPs show strong absorbance in the near-infrared (NIR) range of 650–800 nm, as a result of the plasmonic coupling effect between neighboring GNPs in the vesicular membranes. The strong NIR absorption and the capability of encapsulating photosensitizer Ce6 in GVs enable trimodality NIR fluorescence/thermal/photoacoustic imaging-guided synergistic photothermal/photodynamic therapy (PTT/PDT) with improved efficacy. The Ce6-loaded GVs (GV-Ce6) have the following characteristics: (i) high Ce6 loading efficiency (up to ∼18.4 wt %; (ii) enhanced cellular uptake efficiency of Ce6; (iii) simultaneous trimodality NIR fluorescence/thermal/photoacoustic imaging; (iv) synergistic PTT/PDT treatment with improved efficacy using single wavelength continuous wave laser irradiation
    corecore