2 research outputs found
Structure-Based Design of Novel Class II c-Met Inhibitors: 2. SAR and Kinase Selectivity Profiles of the Pyrazolone Series
As part of our effort toward developing an effective
therapeutic agent for c-Met-dependent tumors, a pyrazolone-based class
II c-Met inhibitor, <i>N</i>-(4-((6,7-dimethoxyquinolin-4-yl)Âoxy)-3-fluorophenyl)-1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1<i>H</i>-pyrazole-4-carboxamide (<b>1</b>), was identified.
Knowledge of the binding mode of this molecule in both c-Met and VEGFR-2
proteins led to a novel strategy for designing more selective analogues
of <b>1</b>. Along with detailed SAR information, we demonstrate
that the low kinase selectivity associated with class II c-Met inhibitors
can be improved significantly. This work resulted in the discovery
of potent c-Met inhibitors with improved selectivity profiles over
VEGFR-2 and IGF-1R that could serve as useful tools to probe the relationship
between kinase selectivity and in vivo efficacy in tumor xenograft
models. Compound <b>59e</b> (AMG 458) was ultimately advanced
into preclinical safety studies
Discovery of 1<i>H</i>‑Pyrazol-3(2<i>H</i>)‑ones as Potent and Selective Inhibitors of Protein Kinase R‑like Endoplasmic Reticulum Kinase (PERK)
The
structure-based design and optimization of a novel series of
selective PERK inhibitors are described resulting in the identification
of <b>44</b> as a potent, highly selective, and orally active
tool compound suitable for PERK pathway biology exploration both in
vitro and in vivo