70 research outputs found
Development of a Fertility Restorer for inap CMS (Isatis indigotica) Brassica napus Through Genetic Introgression of One Alien Addition
Novel Brassica napus cytoplasmic male sterility (CMS) with carpelloid stamens (inap CMS) was produced by intertribal somatic hybridization with Isatis indigotica (Chinese woad), but its RF (restorer of fertility) gene(s) existed in one particular woad chromosome that was carried by one fertile monosomic alien addition line (MAAL) of rapeseed. Herein, the selfed progenies of this MAAL were extensively selected and analyzed to screen the rapeseed-type plants (2n = 38) with good male fertility and to produce their doubled haploid (DH) lines by microspore culture. From the investigation of fertility restoration in the F1 hybrids with inap CMS, one DH line (RF 39) was identified to adequately restore male fertility and likely carried one dominant RF gene. Specifically, this restorer produced brown pollen grains, similar to the woad and the MAAL, suggesting that this trait is closely linked with the RF gene(s) and serves as one phenotypic marker for the restorer. This restorer contained 38 chromosomes of rapeseed and no intact chromosomes of woad, but some DNA fragments of woad origin were detected at low frequency. This restorer was much improved for pollen and seed fertility and for low glucosinolate content. The successful breeding of the restorer for inap CMS rendered this new pollination control system feasible for rapeseed hybrid production
Meta-Analysis of the Luminal and Basal Subtypes of Bladder Cancer and the Identification of Signature Immunohistochemical Markers for Clinical Use
AbstractBackgroundIt has been suggested that bladder cancer can be divided into two molecular subtypes referred to as luminal and basal with distinct clinical behaviors and sensitivities to chemotherapy. We aimed to validate these subtypes in several clinical cohorts and identify signature immunohistochemical markers that would permit simple and cost-effective classification of the disease in primary care centers.MethodsWe analyzed genomic expression profiles of bladder cancer in three cohorts of fresh frozen tumor samples: MD Anderson (n=132), Lund (n=308), and The Cancer Genome Atlas (TCGA) (n=408) to validate the expression signatures of luminal and basal subtypes and relate them to clinical follow-up data. We also used an MD Anderson cohort of archival bladder tumor samples (n=89) and a parallel tissue microarray to identify immunohistochemical markers that permitted the molecular classification of bladder cancer.FindingsBladder cancers could be assigned to two candidate intrinsic molecular subtypes referred to here as luminal and basal in all of the datasets analyzed. Luminal tumors were characterized by the expression signature similar to the intermediate/superficial layers of normal urothelium. They showed the upregulation of PPARÎł target genes and the enrichment for FGFR3, ELF3, CDKN1A, and TSC1 mutations. In addition, luminal tumors were characterized by the overexpression of E-Cadherin, HER2/3, Rab-25, and Src. Basal tumors showed the expression signature similar to the basal layer of normal urothelium. They showed the upregulation of p63 target genes, the enrichment for TP53 and RB1 mutations, and overexpression of CD49, Cyclin B1, and EGFR. Survival analyses showed that the muscle-invasive basal bladder cancers were more aggressive when compared to luminal cancers. The immunohistochemical expressions of only two markers, luminal (GATA3) and basal (KRT5/6), were sufficient to identify the molecular subtypes of bladder cancer with over 90% accuracy.InterpretationThe molecular subtypes of bladder cancer have distinct clinical behaviors and sensitivities to chemotherapy, and a simple two-marker immunohistochemical classifier can be used for prognostic and therapeutic stratification.FundingU.S. National Cancer Institute and National Institute of Health
Mice Deficient in Cyp4a14 Have An Increased Number of Goblet Cells and Attenuated Dextran Sulfate Sodium-Induced Colitis
Background/Aims: Cyp4a14 is a member of cytochrome P450 (Cyp450) enzyme superfamily that possesses NADPH monooxygenase activity, which catalyzes omega-hydroxylation of medium-chain fatty acids and arachidonic acid. Study suggests that down-regulation of Cyp4a14 has an anti-inflammatory response in intestine. The present study was to test the function of Cyp4a14 in dextran sulfate sodium (DSS)-induced colitis. Methods: Female Cyp4a14-knockout (KO) and wild-type (WT) mice were treated with DSS for 6 days to induce colitis. The colon of mice was histologically observed by hematoxylin and eosin (H&E) and periodic acid Schiff (PAS) staining. The serum malondialdehyde (MDA), an endogenous indicator of oxidative stress, was chemically measured. Proinflammatory and NADPH oxidase genes were examined by quantitative polymerase chain reaction (qPCR). Results: Cyp4a14-KO mice had a significantly higher number of goblet cells in the colon and were more resistant to DSS-induced colitis compared with the WT mice. The DSS-treated KO mice had lower levels of MDA. Consistent with the milder inflammatory pathological changes, DSS-treated KO mice had lower levels of IL-1β, IL-6 and TNF-α mRNA in the liver and the colon. Moreover, the colon of DSS-treated Cyp4a14-KO and WT mice had higher mRNA levels of two members of NADPH oxidases, Nox2 and Nox4, suggesting that both Nox2 and Nox4 are inflammatory markers. By contrast, DSS-treated WT and KO mice had drastically decreased epithelium-localized Nox1 and dual oxidase (Duox) 2 mRNA levels, coinciding with the erosion of the mucosa induced by DSS. Conclusion: These results suggests a hypothesis that the increased goblet cell in the colon of Cyp4a14-KO mice provides protection from mucosal injury and Cyp4a14-increased oxidative stress exacerbates DSS-induced colitis. Therefore, Cyp4a14 may represent a potential target for treating colitis
Simulation analysis on hybrid energy storage management strategy in warship medium voltage DC power system
[Objectives] In order to suppress the occurrence of a massive bus voltage drop caused by a large-power pulsed load entering the Medium Voltage Direct Current (MVDC) power system of the ship and to maintain the bus voltage within the required safety margin, the Hybrid Energy Storage System (HESS) is a promising solution to this problem. However, the hybrid energy management strategy of the ship MVDC system can greatly affect the energy efficiency of the system.[Methods] Therefore, the PI controller and fuzzy logic controller are designed to predict the reference power of HESS to meet the load power demand. The two methods are analyzed and compared. In light of the energy imbalance existing between the lithium battery and super capacitor, we then design the second-level fuzzy logic controller for redistribution of power. The Matlab/Simulink models of MVDC system, HESS, constant power load and pulse load were established for simulation analysis.[Results] The simulation results show that the fuzzy logic controller and PI controller can predict the required power of the system according to the state of the MVDC system, and the fuzzy logic control strategy is superior to PI control strategy. The second-level fuzzy logic controller can redistribute the power reasonably based on the state of charge between the lithium battery pack and the supercapacitor bank.[Conclusions] The hybrid energy management strategy of the ship's MVDC system can maintain system power balance, suppress busbar fluctuations, improve system stability and survivability
Optimal Scheduling of Doctors Outpatient Departments Based on Patients’ Behavior
The low operational efficiency in the field of medical and health care has become a serious problem in China; the long time that the patients have to wait for is the main phenomenon of difficult medical service. Medical industry is service-oriented and its main purpose is to make profits, so the benefits and competitiveness of a hospital depend on patient satisfaction. This paper makes a survey on a large hospital in Harbin of China and collects relevant data and then uses the prospect theory to analyze patients’ and doctors’ behavioral characteristics and the model of patient satisfaction is established based on fuzzy theory with a triplet α/β/γ. The optimal scheduling of clinic is described as a problem with the rule of first come, first served which maximizes patient satisfaction for the main goal and minimizes operating costs for the secondary goal. And the corresponding mathematical model is established. Finally, a solution method named plant growth simulation algorithm (PGSA) is presented. Then, by means of calculating of the example and comparing with genetic algorithm, the results show that the optimum can be reached; meanwhile the efficiency of the presented algorithm is better than the genetic algorithm
- …