23 research outputs found

    Ubiquity and Persistence of Escherichia coli in a Midwestern Coastal Stream

    No full text
    Dunes Creek, a small Lake Michigan coastal stream that drains sandy aquifers and wetlands of Indiana Dunes, has chronically elevated Escherichia coli levels along the bathing beach near its outfall. This study sought to understand the sources of E. coli in Dunes Creek's central branch. A systematic survey of random and fixed sampling points of water and sediment was conducted over 3 years. E. coli concentrations in Dunes Creek and beach water were significantly correlated. Weekly monitoring at 14 stations during 1999 and 2000 indicated chronic loading of E. coli throughout the stream. Significant correlations between E. coli numbers in stream water and stream sediment, submerged sediment and margin, and margin and 1 m from shore were found. Median E. coli counts were highest in stream sediments, followed by bank sediments, sediments along spring margins, stream water, and isolated pools; in forest soils, E. coli counts were more variable and relatively lower. Sediment moisture was significantly correlated with E. coli counts. Direct fecal input inadequately explains the widespread and consistent occurrence of E. coli in the Dunes Creek watershed; long-term survival or multiplication or both seem likely. The authors conclude that (i) E. coli is ubiquitous and persistent throughout the Dunes Creek basin, (ii) E. coli occurrence and distribution in riparian sediments help account for the continuous loading of the bacteria in Dunes Creek, and (iii) ditching of the stream, increased drainage, and subsequent loss of wetlands may account for the chronically high E. coli levels observed

    Occurrence of Escherichia coli and Enterococci in Cladophora (Chlorophyta) in Nearshore Water and Beach Sand of Lake Michigan

    No full text
    Each summer, the nuisance green alga Cladophora (mostly Cladophora glomerata) amasses along Lake Michigan beaches, creating nearshore anoxia and unsightly, malodorous mats that can attract problem animals and detract from visitor enjoyment. Traditionally, elevated counts of Escherichia coli are presumed to indicate the presence of sewage, mostly derived from nearby point sources. The relationship between fecal indicator bacteria and Cladophora remains essentially unstudied. This investigation describes the local and regional density of Escherichia coli and enterococci in Cladophora mats along beaches in the four states (Wisconsin, Illinois, Indiana, and Michigan) bordering Lake Michigan. Samples of Cladophora strands collected from 10 beaches (n = 41) were assayed for concentrations of E. coli and enterococci during the summer of 2002. Both E. coli and enterococci were ubiquitous (up to 97% occurrence), with overall log mean densities (± standard errors) of 5.3 (± 4.8) and 4.8 (± 4.5) per g (dry weight). E. coli and enterococci were strongly correlated in southern Lake Michigan beaches (P < 0.001, R(2) = 0.73, n = 17) but not in northern beaches (P = 0.892, n = 16). Both E. coli and enterococci survived for over 6 months in sun-dried Cladophora mats stored at 4°C; the residual bacteria in the dried alga readily grew upon rehydration. These findings suggest that Cladophora amassing along the beaches of Lake Michigan may be an important environmental source of indicator bacteria and call into question the reliability of E. coli and enterococci as indicators of water quality for freshwater recreational beaches

    Cladophora (Chlorophyta) spp. Harbor Human Bacterial Pathogens in Nearshore Water of Lake Michigan

    No full text
    Cladophora glomerata, a macrophytic green alga, is commonly found in the Great Lakes, and significant accumulations occur along shorelines during the summer months. Recently, Cladophora has been shown to harbor high densities of the fecal indicator bacteria Escherichia coli and enterococci. Cladophora may also harbor human pathogens; however, until now, no studies to address this question have been performed. In the present study, we determined whether attached Cladophora, obtained from the Lake Michigan and Burns Ditch (Little Calumet River, Indiana) sides of a breakwater during the summers of 2004 and 2005, harbored the bacterial pathogens Shiga toxin-producing Escherichia coli (STEC), Salmonella, Shigella, and Campylobacter. The presence of potential pathogens and numbers of organisms were determined by using cultural methods and by using conventional PCR, most-probable-number PCR (MPN-PCR), and quantitative PCR (QPCR) performed with genus- and toxin-specific primers and probes. While Shigella and STEC were detected in 100% and 25%, respectively, of the algal samples obtained near Burns Ditch in 2004, the same pathogens were not detected in samples collected in 2005. MPN-PCR and QPCR allowed enumeration of Salmonella in 40 to 80% of the ditch- and lakeside samples, respectively, and the densities were up to 1.6 × 10(3) cells per g Cladophora. Similarly, these PCR methods allowed enumeration of up to 5.4 × 10(2) Campylobacter cells/g Cladophora in 60 to 100% of lake- and ditchside samples. The Campylobacter densities were significantly higher (P < 0.05) in the lakeside Cladophora samples than in the ditchside Cladophora samples. DNA fingerprint analyses indicated that genotypically identical Salmonella isolates were associated with geographically and temporally distinct Cladophora samples. However, Campylobacter isolates were genetically diverse. Since animal hosts are thought to be the primary habitat for Campylobacter and Salmonella species, our results suggest that Cladophora is a likely secondary habitat for pathogenic bacteria in Lake Michigan and that the association of these bacteria with Cladophora warrants additional studies to assess the potential health impact on beach users

    Virulence and biodegradation potential of dynamic microbial communities associated with decaying \u3ci\u3eCladophora\u3c/i\u3e in Great Lakes

    No full text
    Cladophora mats that accumulate and decompose along shorelines of the Great Lakes create potential threats to the health of humans and wildlife. The decaying algae create a low oxygen and redox potential environment favoring growth and persistence of anaerobic microbial populations, including Clostridium botulinum, the causal agent of botulism in humans, birds, and other wildlife. In addition to the diverse population of microbes, a dynamic chemical environment is generated, which involves production of numerous organic and inorganic substances, many of which are believed to be toxic to the sand and aquatic biotic communities. In this study, we used 16S-rDNA-based-amplicon sequencing and microfluidic-based quantitative PCR approaches to characterize the bacterial community structure and the abundances of human pathogens associated with Cladophora at different stages (up to 90days) of algal decay in laboratory microcosms. Oxygen levels were largely depleted after a few hours of incubation. As Cladophora decayed, the algal microbial biodiversity decreased within 24h, and the mat transitioned from an aerobic to anaerobic environment. There were increasing abundances of enteric and pathogenic bacteria during decomposition of Cladophora, including Acinetobacter, Enterobacter, Kluyvera, Cedecea, and others. In contrast, there were no or very few sequences (\u3c0.07%) assigned to such groups in fresh Cladophora samples. Principal coordinate analysis indicated that the bacterial community structure was dynamic and changed significantly with decay time. Knowledge of microbial communities and chemical composition of decaying algal mats is critical to our further understanding of the role that Cladophora plays in a beach ecosystem\u27s structure and function, including the algal role in trophic interactions. Based on these findings, public and environmental health concerns should be considered when decaying Cladophora mats accumulate Great Lakes shorelines
    corecore