312 research outputs found

    The association of dimethylarginine dimethylaminohydrolase 1 gene polymorphism with type 2 diabetes: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated plasma levels of asymmetric dimethylarginine (ADMA) has been reported to be associated with insulin resistance and micro/macrovascular diabetic complications, and may predict cardiovascular events in type 2 diabetic patients. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) is the major enzyme eliminating ADMA in humans, but the effect of genetic variations in <it>DDAH1 </it>on type 2 diabetes and its long-term outcome are unknown.</p> <p>Methods</p> <p>From July 2006 to June 2009, we assessed the association between polymorphisms in <it>DDAH1 </it>and type 2 diabetes in 814 consecutive unrelated subjects, including 309 type 2 diabetic patients and 505 non-diabetic individuals. Six single nucleotide polymorphisms (SNPs) in <it>DDAH1</it>, rs233112, rs1498373, rs1498374, rs587843, rs1403956, and rs1241321 were analyzed. Plasma ADMA levels were determined by high performance liquid chromatography. Insulin sensitivity was assessed by the homeostasis model assessment of insulin resistance (HOMA-IR).</p> <p>Results</p> <p>Among the 6 SNPs, only rs1241321 was significantly associated with a decreased risk of type 2 diabetes (AA <it>vs </it>GG+AG, OR = 0.64, 95% CI 0.47-0.86, p = 0.004). The association remained unchanged after adjustment for plasma ADMA level. The fasting plasma glucose and log HOMA-IR tended to be lower in subjects carrying the homozygous AA genotype of rs1241321 compared with the GG+AG genotypes. Over a median follow-up period of 28.2 months, there were 44 all-cause mortality and 50 major adverse cardiovascular events (MACE, including cardiovascular death, non-fatal myocardial infarction and stroke). Compared with the GG and AG genotypes, the AA genotype of rs1241321 was associated with reduced risk of MACE (HR = 0.31, 95% CI: 0.11-0.90, p = 0.03) and all-cause mortality (HR = 0.18, 95% CI: 0.04-0.80, p = 0.02) only in subgroup with type 2 diabetes. One common haplotype (GGCAGC) was found to be significantly associated with a decreased risk of type 2 diabetes (OR = 0.67, 95% CI = 0.46-0.98, p = 0.04).</p> <p>Conclusions</p> <p>Our results provide the first evidence that SNP rs1241321 in <it>DDAH1 </it>is associated with type 2 diabetes and its long-term outcome.</p

    Adiponectin Gene Polymorphism Is Selectively Associated with the Concomitant Presence of Metabolic Syndrome and Essential Hypertension

    Get PDF
    OBJECTIVE: Cardiovascular risk increases with the presence of both metabolic syndrome (MetS) and hypertension (HTN). Although the adiponectin (ADIPOQ) gene has been reported to be involved in MetS, its association with HTN remained undetermined. This study aimed to investigate the association of ADIPOQ gene with the phenotypes of HTN and MetS. METHODS: A total of 962 participants from 302 families from the Taiwan young-onset hypertension genetic study were enrolled. Plasma adiponectin were measured, and association analysis was conducted by using GEE regression-based method. Another study, of 1448 unrelated participants, was conducted to replicate the association between ADIPOQ gene and variable phenotypes of MetS with or without HTN. RESULTS: Among 962 subjects from family samples, the lowest plasma adiponectin value was observed in MetS with HTN component (9.3Ā±0.47 Āµg/ml) compared with hypertensives (13.4Ā±0.74 Āµg /ml) or MetS without HTN (11.9Ā±0.60 Āµg/ml, P<0.05). The SNP rs1501299 (G276T) in ADIPOQ gene was found associated with the presence of HTN in MetS (odds ratio for GG+GT vs. TTā€Š=ā€Š2.46; 95% CI: 1.14-5.3, pā€Š=ā€Š0.02), but not rs2241766 (T45G). No association of ADIPOQ gene with HTN alone or MetS without HTN was observed. The significant association of the SNP rs1501299 (G276T) with the phenotype of presence of HTN in MetS was confirmed (odds ratio for GG+GT vs. TTā€Š=ā€Š2.15; 95% CI: 1.1-4.3) in the replication study. CONCLUSIONS: ADIPOQ genetic variants were selectively and specifically associated with the concomitant presence of MetS and HTN, suggesting potential genetic linkage between MetS and HTN

    Association between genetic variant on chromosome 12p13 and stroke survival and recurrence: a one year prospective study in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between ischemic stroke and 2 single nucleotide polymorphisms (SNPs) on chromosome 12p13, rs12425791 and rs11833579 appears inconsistent across different samples. These SNPs are close to the ninjurin2 gene which may alter the risk of stroke by affecting brain response to ischemic injury. The purpose of this study was to investigate the association between these two SNPs and ischemic stroke risk, as well as prognostic outcomes in a Taiwanese sample.</p> <p>Methods</p> <p>We examined the relations of these two SNPs to the odds of new-onset ischemic stroke, ischemic stroke subtypes, and to the one year risk of stroke-related death or recurrent stroke following initial stroke in a case-control study. A total of 765 consecutive patients who had first-ever ischemic stroke were compared to 977 stroke-free, age-matched controls. SNPs were genotyped by Taqman fluorescent allelic discrimination assay. The association between ischemic stroke and SNPs were analyzed by multivariate logistic regression. Cox proportional hazard model was used to assess the effect of individual SNPs on stroke-related mortality or recurrent stroke.</p> <p>Results</p> <p>There was no significant association between SNP rs12425791 and rs11833579 and ischemic stroke after multiple testing corrections. However, the marginal significant association was observed between SNP rs12425791 and large artery atherosclerosis under recessive model (OR, 2.30; 95%CI, 1.22-4.34; q-value = 0.062). Among the 765 ischemic stroke patients, 59 died or developed a recurrent stroke. After adjustment for age, sex, vascular risk factors and baseline stroke severity, Cox proportional hazard analysis indicated that the hazard ratios were 2.76 (95%CI, 1.34-5.68; q-value, 0.02) and 2.15 (95%CI, 1.15-4.02; q-value, 0.03) for individuals with homozygous variant allele of rs12425791 and rs11833579, respectively.</p> <p>Conclusions</p> <p>This is a precedent study that found genetic variants of rs12425791 and rs11833579 on chromosome 12p13 are independent predictors of stroke-related mortality or stroke recurrence in patients with incident ischemic stroke in Taiwan. Further study is needed to explore the details of the physiological function and the molecular mechanisms underlying the association of this genetic locus with ischemic stroke.</p

    Atomic layer deposition-based functionalization of materials for medical and environmental health applications

    Get PDF
    Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications

    Two Photon Polymerization-Micromolding of Polyethylene Glycol-Gentamicin Sulfate Microneedles

    Get PDF
    The use of microneedles for transdermal drug delivery is limited due to the risk of infection associated with formation of channels through the stratum corneum layer of the epidermis. The risk of infection associated with use of microneedles may be reduced by imparting these devices with antimicrobial properties. In this study, a photopolymerization-micromolding technique was used to fabricate microneedle arrays from a photosensitive material containing polyethylene glycol 600 diacrylate, gentamicin sulfate, and a photoinitiator. Scanning electron microscopy indicated that the photopolymerization-micromolding process produced microneedle arrays that exhibited good microneedle-to-microneedle uniformity. An agar plating assay revealed that microneedles fabricated with polyethylene glycol 600 diacrylate containing 2 mg mLāˆ’1 gentamicin sulfate inhibited growth of Staphylococcus aureus bacteria. Scanning electron microscopy revealed no platelet aggregation on the surfaces of platelet rich plasma-exposed undoped polyethylene glycol 600 diacrylate microneedles and gentamicin-doped polyethylene glycol 600 diacrylate microneedles. These efforts will enable wider adoption of microneedles for transdermal delivery of pharmacologic agents
    • ā€¦
    corecore