26,127 research outputs found

    Isotropic pyrolytic carbons

    Get PDF
    Depositing carbon on high-temperature substrate that is kept in motion by vibration produces isotropic pyrolytic graphite or carbon without using fluidized beds

    Research on low voltage electroluminescent devices with storage, phase 3 Final technical report

    Get PDF
    Production and optical properties of zinc selenide aluminum arsenide heterojunction and platinum zinc selenide Schottky junctio

    Evidence for Narrow S=+1 Baryon Resonance in Photo-production from Neutron

    Full text link
    The gamma n -> K+ K- n reaction on 12C has been studied by measuring both K+ and K- at forward angles. A sharp baryon resonance peak was observed at 1.54 +- 0.01 GeV with a width smaller than 25 MeV and a Gaussian significance of 4.6 sigma. The strangeness quantum number (S) of the baryon resonance is +1. It can be interpreted as a molecular meson-baryon resonance or alternatively as an exotic 5-quark state (uudd{s_bar}) that decays into a K+ and a neutron. The resonance is consistent with the lowest member of an anti-decuplet of baryons predicted by the chiral soliton model.Comment: 12 pages, 3 encapsulated postscript figure

    Electronic structure and magnetism of equiatomic FeN

    Full text link
    In order to investigate the phase stability of equiatomic FeN compounds and the structure-dependent magnetic properties, the electronic structure and total energy of FeN with NaCl, ZnS and CsCl structures and various magnetic configurations are calculated using the first-principles TB-LMTO-ASA method. Among all the FeN phases considered, the antiferromagnetic NaCl structure with q=(00pi) is found to have the lowest energy at the theoretical equilibrium volume. However, the FM NaCl phase lies only 1mRyd higher. The estimated equilibrium lattice constant for nonmagnetic ZnS-type FeN agrees quite well with the experimental value, but for the AFM NaCl phase the estimated value is 6.7% smaller than that observed experimentally. For ZnS-type FeN, metastable magnetic states are found for volumes larger than the equilibrium value. On the basis of an analysis of the atom- and orbital-projected density of states and orbital-projected Crystal Orbital Hamilton Population, the iron-nitrogen interactions in NM ZnS, AFM NaCl and FM CsCl structures are discussed. The leading Fe-N interactions is due to the d-p iron-nitrogen hybridization, while considerable s-p and p-p hybridizations are also observed in all three phases. The iron magnetic moment in FeN is found to be highly sensitive to the nearest-neighboring Fe-N distance. In particular, the magnetic moment shows an abrupt drop from a value of about 2 muB to zero with the reduction of the Fe-N distance for the ZnS and CsCl structures.Comment: 12 pages, 6 figure

    Pressure-induced isostructural phase transition of metal-doped silicon clathrates

    Full text link
    We propose an atomistic model for the pressure-induced isostructural phase transition of metal-doped silicon clathrates, Ba8Si46 and K8Si46, that has been observed at 14 GPa and 23 GPa, respectively. The model explains successfully the equation of state, transition pressure, change of Raman spectra and dependence on the doped cations as well as the effects of substituting Si(6c) atoms with noble metals.Comment: 5 pages, two coumn, 5 figures. See http://www.iitaka.org/down.html for more informatio
    corecore