3,193 research outputs found

    The epithelium of the dorsal marginal zone of Xenopus has organizer properties

    Get PDF
    We have investigated the properties of the epithelial layer of the dorsal marginal zone (DMZ) of the Xenopus laevis early gastrula and found that it has inductive properties similar to those of the entire Spemann organizer. When grafts of the epithelial layer of the DMZ of early gastrulae labelled with fluorescein dextran were transplanted to the ventral sides of unlabelled host embryos, they induced secondary axes composed of notochord, somites and posterior neural tube. The organizer epithelium rescued embryos ventralized by UV irradiation, inducing notochord, somites and posterior neural tube in these embryos, while over 90% of ventralized controls showed no such structures. Combinations of organizer epithelium and ventral marginal zone (VMZ) in explants of the early gastrula resulted in convergence, extension and differentiation of dorsal mesodermal tissues, whereas similar recombinants of nonorganizer epithelium and the VMZ did none of these things. In all cases, the axial structures forming in response to epithelial grafts were composed of labelled graft and unlabelled host cells, indicating an induction by the organizer epithelium of dorsal, axial morphogenesis and tissue differentiation among mesodermal cells that otherwise showed non-axial development. Serial sectioning and scanning electron microscopy of control grafts shows that the epithelial organizer effect occurs in the absence of contaminating deep cells adhering to the epithelial grafts. However, labelled organizer epithelium grafted to the superficial cell layer contributed cells to deep mesodermal tissues, and organizer epithelium developed into mesodermal tissues when deliberately grafted into the deep region. This shows that these prospective endodermal epithelial cells are able to contribute to mesodermal, mesenchymal tissues when they move or are moved into the deep environment. These results suggest that in normal development, the endodermal epithelium may influence some aspects of the cell motility underlying the mediolateral intercalation (see Shih, J. and Keller, R. (1992) Development 116, 901–914), as well as the tissue differentiation of mesodermal cells. These results have implications for the analysis of mesoderm induction and for analysis of variations in the differentiation and morphogenetic function of the marginal zone in different species of amphibians

    Cell motility driving mediolateral intercalation in explants of Xenopus laevis

    Get PDF
    In Xenopus, convergence and extension are produced by active intercalation of the deep mesodermal cells between one another along the mediolateral axis (mediolateral cell intercalation), to form a narrower, longer array. The cell motility driving this intercalation is poorly understood. A companion paper shows that the endodermal epithelium organizes the outermost mesodermal cells immediately beneath it to undergo convergence and extension, and other evidence suggests that these deep cells are the most active participants in mediolateral intercalation (Shih, J. and Keller, R. (1992) Development 116, 887–899). In this paper, we shave off the deeper layers of mesodermal cells, which allows us to observe the protrusive activity of the mesodermal cells next to the organizing epithelium with high resolution video microscopy. These mesodermal cells divide in the early gastrula and show rapid, randomly directed protrusive activity. At the early midgastrula stage, they begin to express a characteristic sequence of behaviors, called mediolateral intercalation behavior (MIB): (1) large, stable, filiform and lamelliform protrusions form in the lateral and medial directions, thus making the cells bipolar; (2) these protrusions are applied directly to adjacent cell surfaces and exert traction on them, without contact inhibition; (3) as a result, the cells elongate and align parallel to the mediolateral axis and perpendicular to the axis of extension; (4) the elongate, aligned cells intercalate between one another along the mediolateral axis, thus producing a longer, narrower array. Explants of essentially a single layer of deep mesodermal cells, made at stage 10.5, converge and extend by mediolateral intercalation. Thus by stage 10.5 (early midgastrula), expression of MIB among deep mesodermal cells is physiologically and mechanically independent of the organizing influence of the endodermal epithelium, described previously (Shih, J. and Keller, R. (1992) Development 116 887–899), and is the fundamental cell motility underlying mediolateral intercalation and convergence and extension of the body axis

    Distribution of tissue progenitors within the shield region of the zebrafish gastrula

    Get PDF
    The zebrafish has emerged as an important model system for the experimental analysis of vertebrate development because it is amenable to genetic analysis and because its optical clarity allows the movements and the differentiation of individual cells to be followed in vivo. In this paper, we have sought to characterize the spatial distribution of tissue progenitors within the outer cell layers of the embryonic shield region of the early gastrula. Single cells were labeled by iontophoretic injection of fluorescent dextrans. Subsequently, we documented their position with respect to the embryonic shield and their eventual fates. Our data show that progenitor cells of the neural, notochordal, somitic and endodermal lineages were all present within the embryonic shield region, and that these progenitors were arranged as intermingled populations. Moreover, close to the midline, there was evidence for significant biases in the distribution of neural and notochord progenitors between the layers, suggesting some degree of radial organization within the zebrafish embryonic shield region. The distributions of tissue progenitors in the zebrafish gastrula differ significantly from those in amphibians; this bears not only on interpretations of mutant phenotypes and in situ staining patterns, but also on our understanding of morphogenetic movements during gastrulation and of neural induction in the zebrafish

    Characterizing the zebrafish organizer: microsurgical analysis at the early-shield stage

    Get PDF
    The appearance of the embryonic shield, a slight thickening at the leading edge of the blastoderm during the formation of the germ ring, is one of the first signs of dorsoventral polarity in the zebrafish embryo. It has been proposed that the shield plays a role in fish embryo patterning similar to that attributed to the amphibian dorsal lip. In a recent study, we fate mapped many of the cells in the region of the forming embryonic shield, and found that neural and mesodermal progenitors are intermingled (Shih, J. and Fraser, S.E. (1995) Development 121, 2755–2765), in contrast to the coherent region of mesodermal progenitors found at the amphibian dorsal lip. Here, we examine the fate and the inductive potential of the embryonic shield to determine if the intermingling reflects a different mode of embryonic patterning than that found in amphibians. Using the microsurgical techniques commonly used in amphibian and avian experimental embryology, we either grafted or deleted the region of the embryonic shield. Homotopic grafting experiments confirmed the fates of cells within the embryonic shield region, showing descendants in the hatching gland, head mesoderm, notochord, somitic mesoderm, endoderm and ventral aspect of the neuraxis. Heterotopic grafting experiments demonstrated that the embryonic shield can organize a second embryonic axis; however, contrary to our expectations based on amphibian research, the graft contributes extensively to the ectopic neuraxis. Microsurgical deletion of the embryonic shield region at the onset of germ ring formation has little effect on neural development: embryos with a well-formed and well-patterned neuraxis develop in the complete absence of notochord cells. While these results show that the embryonic shield is sufficient for ectopic axis formation, they also raise questions concerning the necessity of the shield region for neural induction and embryonic patterning after the formation of the germ ring

    The patterning and functioning of protrusive activity during convergence and extension of the Xenopus organiser

    Get PDF
    We discuss the cellular basis and tissue interactions regulating convergence and extension of the vertebrate body axis in early embryogenesls of Xenopus. Convergence and extension occur in the dorsal mesoderm (prospective notochord and somite) and in the posterior nervous system (prospective hindbrain and spinal cord) by sequential cell intercalations. Several layers of cells intercalate to form a thinner, longer array (radial intercalation) and then cells intercalate in the mediolateral orientation to form a longer, narrower array (mediolateral intercalation). Fluorescence microscopy of labeled mesodermal cells in explants shows that protrusive activity is rapid and randomly directed until the midgastrula stage, when it slows and is restricted to the medial and lateral ends of the cells. This bipolar protrusive activity results in elongation, alignment and mediolateral intercalation of the cells. Mediolateral intercalation behavior (MIB) is expressed in an anterior- posterior and lateral-medial progression in the mesoderm. MIB is first expressed laterally in both somitic and notochordal mesoderm. From its lateral origins in each tissue, MIB progresses medially. If convergence does not bring the lateral boundaries of the tissues closer to the medial cells in the notochordal and somitic territories, these cells do not express MIB. Expression of tissue-specific markers follows and parallels the expression of MIB. These facts argue that MIB and some aspects of tissue differentiation are induced by signals emanating from the lateral boundaries of the tissue territories and that convergence must bring medial cells and boundaries closer together for these signals to be effective. Grafts of dorsal marginal zone epithelium to the ventral sides of other embryos, to ventral explants and to UV-ventralized embryos show that it has a role in organising convergence and extension, and dorsal tissue differentiation among deep mesodermal cells. Grafts of involuting marginal zone to animal cap tissue of the early gastrula shows that convergence and extension of the hindbrain-spinal cord are induced by planar signals from the involuting marginal zone

    Kolmogorov Behavior of Near-Wall Turbulence and Its Application in Turbulence Modeling

    Get PDF
    The near-wall behavior of turbulence is re-examined in a way different from that proposed by Hanjalic and Launder and followers. It is shown that at a certain distance from the wall, all energetic large eddies will reduce to Kolmogorov eddies (the smallest eddies in turbulence). All the important wall parameters, such as friction velocity, viscous length scale, and mean strain rate at the wall, are characterized by Kolmogorov microscales. According to this Kolmogorov behavior of near-wall turbulence, the turbulence quantities, such as turbulent kinetic energy, dissipation rate, etc. at the location where the large eddies become Kolmogorov eddies, can be estimated by using both direct numerical simulation (DNS) data and asymptotic analysis of near-wall turbulence. This information will provide useful boundary conditions for the turbulent transport equations. As an example, the concept is incorporated in the standard k-epsilon model which is then applied to channel and boundary flows. Using appropriate boundary conditions (based on Kolmogorov behavior of near-wall turbulence), there is no need for any wall-modification to the k-epsilon equations (including model constants). Results compare very well with the DNS and experimental data

    Remarks on turbulent constitutive relations

    Get PDF
    The paper demonstrates that the concept of turbulent constitutive relations can be used to construct general models for various turbulent correlations. Some of the Generalized Cayley-Hamilton formulas for relating tensor products of higher extension to tensor products of lower extension are introduced. The combination of dimensional analysis and invariant theory can lead to 'turbulent constitutive relations' (or general turbulence models) for, in principle, any turbulent correlations. As examples, the constitutive relations for Reynolds stresses and scalar fluxes are derived. The results are consistent with ones from Renormalization Group (RNG) theory and two-scale Direct-Interaction Approximation (DIA) method, but with a more general form

    A critical comparison of second order closures with direct numerical simulation of homogeneous turbulence

    Get PDF
    Recently, several second order closure models have been proposed for closing the second moment equations, in which the velocity-pressure gradient (and scalar-pressure gradient) tensor and the dissipation rate tensor are two of the most important terms. In the literature, these correlation tensors are usually decomposed into a so called rapid term and a return-to-isotropy term. Models of these terms have been used in global flow calculations together with other modeled terms. However, their individual behavior in different flows have not been fully examined because they are un-measurable in the laboratory. Recently, the development of direct numerical simulation (DNS) of turbulence has given us the opportunity to do this kind of study. With the direct numerical simulation, we may use the solution to exactly calculate the values of these correlation terms and then directly compare them with the values from their modeled formulations (models). Here, we make direct comparisons of five representative rapid models and eight return-to-isotropy models using the DNS data of forty five homogeneous flows which were done by Rogers et al. (1986) and Lee et al. (1985). The purpose of these direct comparisons is to explore the performance of these models in different flows and identify the ones which give the best performance. The modeling procedure, model constraints, and the various evaluated models are described. The detailed results of the direct comparisons are discussed, and a few concluding remarks on turbulence models are given

    A Realizable Reynolds Stress Algebraic Equation Model

    Get PDF
    The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate
    corecore