3 research outputs found

    Molecular Dynamics Study of Carbon Nanotubes/Polyamide Reverse Osmosis Membranes: Polymerization, Structure, and Hydration

    No full text
    Carbon nanotubes/polyamide (PA) nanocomposite thin films have become very attractive as reverse osmosis (RO) membranes. In this work, we used molecular dynamics to simulate the influence of single walled carbon nanotubes (SWCNTs) in the polyamide molecular structure as a model case of a carbon nanotubes/polyamide nanocomposite RO membrane. It was found that the addition of SWCNTs decreases the pore size of the composite membrane and increases the Na and Cl ion rejection. Analysis of the radial distribution function of water confined in the pores of the membranes shows that SWCNT+PA nanocomposite membranes also exhibit smaller clusters of water molecules within the membrane, thus suggesting a dense membrane structure (SWCNT+PA composite membranes were 3.9% denser than bare PA). The results provide new insights into the fabrication of novel membranes reinforced with tubular structures for enhanced desalination performance

    Effective Antiscaling Performance of Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposites

    No full text
    The antiscaling properties of multiwalled carbon nanotube (MWCNT)–polyamide (PA) nanocomposite reverse-osmosis (RO) desalination membranes (MWCNT–PA membranes) were studied. An aqueous solution of calcium chloride (CaCl<sub>2</sub>) and sodium bicarbonate (NaHCO<sub>3</sub>) was used to precipitate in situ calcium carbonate (CaCO<sub>3</sub>) to emulate scaling. The MWCNT contents of the studied nanocomposite membranes prepared by interfacial polymerization ranged from 0 wt % (plain PA) to 25 wt %. The inorganic antiscaling performances were compared for the MWCNT–PA membranes to laboratory-made plain and commercial PA-based RO membranes. The scaling process on the membrane surface was monitored by fluorescence microscopy after labeling the scale with a fluorescent dye. The deposited scale on the MWCNT–PA membrane was less abundant and more easily detached by the shear stress under cross-flow compared to other membranes. Molecular dynamics simulations revealed that the attraction of Ca<sup>2+</sup> ions was hindered by the interfacial water layer formed on the surface of the MWCNT–PA membrane. Together, our findings revealed that the observed outstanding antiscaling performance of MWCNT–PA membranes results from (i) a smooth surface morphology, (ii) a low surface charge, and (iii) the formation of an interfacial water layer. The MWCNT–PA membranes described herein are advantageous for water treatment

    Antiorganic Fouling and Low-Protein Adhesion on Reverse-Osmosis Membranes Made of Carbon Nanotubes and Polyamide Nanocomposite

    No full text
    We demonstrate efficient antifouling and low protein adhesion of multiwalled carbon nanotubes-polyamide nanocomposite (MWCNT-PA) reverse-osmosis (RO) membranes by combining experimental and theoretical studies using molecular dynamics (MD) simulations. Fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (FITC-BSA) was used for the fouling studies. The fouling was observed in real time by using a crossflow system coupled to a fluorescence microscope. Notably, it was observed that BSA anchoring on the smooth MWCNT-PA membrane was considerably weaker than that of other commercial/laboratory-made plain PA membranes. The permeate flux reduction of the MWCNT-PA nanocomposite membranes by the addition of FITC-BSA was 15% of its original value, whereas those of laboratory-made plain PA and commercial membranes were much larger at 34%–50%. Computational MD simulations indicated that the presence of MWCNT in PA results in weaker interactions between the membrane surface and BSA molecule due to the formation of (i) a stiffer PA structure resulting in lower conformity of the molecular structure against BSA, (ii) a smoother surface morphology, and (iii) an increased hydrophilicity involving the formation of an interfacial water layer. These results are important for the design and development of promising antiorganic fouling RO membranes for water treatment
    corecore