513 research outputs found

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Least Squares Based and Two-Stage Least Squares Based Iterative Estimation Algorithms for H-FIR-MA Systems

    Get PDF
    This paper studies the identification of Hammerstein finite impulse response moving average (H-FIR-MA for short) systems. A new two-stage least squares iterative algorithm is developed to identify the parameters of the H-FIR-MA systems. The simulation cases indicate the efficiency of the proposed algorithms

    Bayesian Domain Invariant Learning via Posterior Generalization of Parameter Distributions

    Full text link
    Domain invariant learning aims to learn models that extract invariant features over various training domains, resulting in better generalization to unseen target domains. Recently, Bayesian Neural Networks have achieved promising results in domain invariant learning, but most works concentrate on aligning features distributions rather than parameter distributions. Inspired by the principle of Bayesian Neural Network, we attempt to directly learn the domain invariant posterior distribution of network parameters. We first propose a theorem to show that the invariant posterior of parameters can be implicitly inferred by aggregating posteriors on different training domains. Our assumption is more relaxed and allows us to extract more domain invariant information. We also propose a simple yet effective method, named PosTerior Generalization (PTG), that can be used to estimate the invariant parameter distribution. PTG fully exploits variational inference to approximate parameter distributions, including the invariant posterior and the posteriors on training domains. Furthermore, we develop a lite version of PTG for widespread applications. PTG shows competitive performance on various domain generalization benchmarks on DomainBed. Additionally, PTG can use any existing domain generalization methods as its prior, and combined with previous state-of-the-art method the performance can be further improved. Code will be made public

    Semi-blind source extraction algorithm for fetal electrocardiogram based on generalized autocorrelations and reference signals

    Get PDF
    AbstractBlind source extraction (BSE) has become one of the promising methods in the field of signal processing and analysis, which only desires to extract “interesting” source signals with specific stochastic property or features so as to save lots of computing time and resources. This paper addresses BSE problem, in which desired source signals have some available reference signals. Based on this prior information, we develop an objective function for extraction of temporally correlated sources. Maximizing this objective function, a semi-blind source extraction fixed-point algorithm is proposed. Simulations on artificial electrocardiograph (ECG) signals and the real-world ECG data demonstrate the better performance of the new algorithm. Moreover, comparisons with existing algorithms further indicate the validity of our new algorithm, and also show its robustness to the estimated error of time delay

    SRDA-Net: Super-Resolution Domain Adaptation Networks for Semantic Segmentation

    Full text link
    Recently, Unsupervised Domain Adaptation was proposed to address the domain shift problem in semantic segmentation task, but it may perform poor when source and target domains belong to different resolutions. In this work, we design a novel end-to-end semantic segmentation network, Super-Resolution Domain Adaptation Network (SRDA-Net), which could simultaneously complete super-resolution and domain adaptation. Such characteristics exactly meet the requirement of semantic segmentation for remote sensing images which usually involve various resolutions. Generally, SRDA-Net includes three deep neural networks: a Super-Resolution and Segmentation (SRS) model focuses on recovering high-resolution image and predicting segmentation map; a pixel-level domain classifier (PDC) tries to distinguish the images from which domains; and output-space domain classifier (ODC) discriminates pixel label distributions from which domains. PDC and ODC are considered as the discriminators, and SRS is treated as the generator. By the adversarial learning, SRS tries to align the source with target domains on pixel-level visual appearance and output-space. Experiments are conducted on the two remote sensing datasets with different resolutions. SRDA-Net performs favorably against the state-of-the-art methods in terms of accuracy and visual quality. Code and models are available at https://github.com/tangzhenjie/SRDA-Net
    • …
    corecore