46,565 research outputs found

    Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser

    Get PDF
    This paper summarizes analytical studies and the interpretation of experimental results for the compression and rarefaction waves generated in the cavity of a pulsed CO electric discharge laser. A one-dimensional analysis of acoustic waves is applied to a transversely excited laser. The influences of heating in the cathode fall, heat transfer to the cathode, flow through both the anode and cathode, and bulk heating of the plasma are included. The analysis is used to relate the bulk heating rate to observable features of the pressure and density waves. Data obtained from interferograms and reported elsewhere are used to infer the bulk heating rates in a pulsed CO laser. Results are presented for CO/Ar, CO/N2, and N2 plasmas. Comparison of the data with recent theoretical results for the heating due to electron/ neutral collisions and the anharmonic defect associated with V-V energy transfer shows substantial differences at lower values of total energy deposition. The change of heating with E/N is in fairly good agreement with predicted values

    On the average Gamma-Ray Burst X-ray flaring activity

    Full text link
    Gamma-ray burst X-ray flares are believed to mark the late time activity of the central engine. We compute the temporal evolution of the average flare luminosity in the common rest frame energy band of 44 GRBs taken from the large \emph{Swift} 5-years data base. Our work highlights the importance of a proper consideration of the threshold of detection of flares against the contemporaneous continuous X-ray emission. In the time interval 30st2.7±0.130 \rm{s}\propto t^{-2.7\pm 0.1}; this implies that the flare isotropic energy scaling is Eiso,flaret1.7E_{\rm{iso,flare}}\propto t^{-1.7}. The decay of the continuum underlying the flare emission closely tracks the average flare luminosity evolution, with a typical flare to steep-decay luminosity ratio which is Lflare/Lsteep=4.7L_{\rm{flare}}/L_{\rm{steep}}=4.7: this suggests that flares and continuum emission are deeply related to one another. We infer on the progenitor properties considering different models. According to the hyper-accreting black hole scenario, the average flare luminosity scaling can be obtained in the case of rapid accretion (tacctt_{\rm{acc}}\ll t) or when the last \sim 0.5 M_{\sun} of the original 14 M_{\sun} progenitor star are accreted. Alternatively, the steep t2.7\propto t^{-2.7} behaviour could be triggered by a rapid outward expansion of an accretion shock in the material feeding a convective disk. If instead we assume the engine to be a rapidly spinning magnetar, then its rotational energy can be extracted to power a jet whose luminosity is likely to be between the monopole (Le2tL\propto e^{-2t}) and dipole (Lt2L\propto t^{-2}) cases. In both scenarios we suggest the variability, which is the main signature of the flaring activity, to be established as a consequence of different kinds of instabilities.Comment: MNRAS accepte

    Electroweak Theory Without Higgs Bosons

    Full text link
    A perturbative SU(2)_L X U(1)_Y electroweak theory containing W, Z, photon, ghost, lepton and quark fields, but no Higgs or other fields, gives masses to W, Z and the non-neutrino fermions by means of an unconventional choice for the unperturbed Lagrangian and a novel method of renormalisation. The renormalisation extends to all orders. The masses emerge on renormalisation to one loop. To one loop the neutrinos are massless, the A -> Z transition drops out of the theory, the d quark is unstable and S-matrix elements are independent of the gauge parameter xi.Comment: 27 pages, LaTex, no figures; revised for publication; accepted by Int. J. Mod. Phys. A; includes biographical note on A. F. Nicholso
    corecore