research

On the average Gamma-Ray Burst X-ray flaring activity

Abstract

Gamma-ray burst X-ray flares are believed to mark the late time activity of the central engine. We compute the temporal evolution of the average flare luminosity in the common rest frame energy band of 44 GRBs taken from the large \emph{Swift} 5-years data base. Our work highlights the importance of a proper consideration of the threshold of detection of flares against the contemporaneous continuous X-ray emission. In the time interval 30st2.7±0.130 \rm{s}\propto t^{-2.7\pm 0.1}; this implies that the flare isotropic energy scaling is Eiso,flaret1.7E_{\rm{iso,flare}}\propto t^{-1.7}. The decay of the continuum underlying the flare emission closely tracks the average flare luminosity evolution, with a typical flare to steep-decay luminosity ratio which is Lflare/Lsteep=4.7L_{\rm{flare}}/L_{\rm{steep}}=4.7: this suggests that flares and continuum emission are deeply related to one another. We infer on the progenitor properties considering different models. According to the hyper-accreting black hole scenario, the average flare luminosity scaling can be obtained in the case of rapid accretion (tacctt_{\rm{acc}}\ll t) or when the last \sim 0.5 M_{\sun} of the original 14 M_{\sun} progenitor star are accreted. Alternatively, the steep t2.7\propto t^{-2.7} behaviour could be triggered by a rapid outward expansion of an accretion shock in the material feeding a convective disk. If instead we assume the engine to be a rapidly spinning magnetar, then its rotational energy can be extracted to power a jet whose luminosity is likely to be between the monopole (Le2tL\propto e^{-2t}) and dipole (Lt2L\propto t^{-2}) cases. In both scenarios we suggest the variability, which is the main signature of the flaring activity, to be established as a consequence of different kinds of instabilities.Comment: MNRAS accepte

    Similar works