1 research outputs found

    Role of P‑Glycoprotein on the Brain Penetration and Brain Pharmacodynamic Activity of the MEK Inhibitor Cobimetinib

    No full text
    Cobimetinib is a MEK inhibitor currently in clinical trials as an anticancer agent. The objectives of this study were to determine in vitro and in vivo if cobimetinib is a substrate of P-glycoprotein (P-gp) and/or breast cancer resistance protein (Bcrp1) and to assess the implications of efflux on cobimetinib pharmacokinetics (PK), brain penetration, and target modulation. Cell lines transfected with P-gp or Bcrp1 established that cobimetinib was a substrate of P-gp but not a substrate of Bcrp1. In vivo, after intravenous and oral administration of cobimetinib to FVB (wild-type; WT), <i>Mdr1a/b­(−/−)</i>,<i> Bcrp1 (−/−)</i>, and <i>Mdr1a/b­(−/−)/Bcrp­(−/−)</i> knockout (KO) mice, clearance was similar in WT (35.5 ± 16.7 mL/min/kg) and KO animals (22.0 ± 3.6 to 27.6 ± 5.2 mL/min/kg); oral exposure was also similar between WT and KO animals. After an oral 10 mg/kg dose of cobimetinib, the mean total brain to plasma ratio (Kp) at 6 h postdose was 0.3 and 0.2 in WT and <i>Bcrp1­(−/−)</i> mice, respectively. In <i>Mdr1a/b­(−/−)</i> and <i>Mdr1<i>a</i>/1b/Bcrp1­(−/−)</i> KO mice and WT mice treated with elacridar (a P-gp and BCRP inhibitor), Kp increased to 11, 6, and 7, respectively. Increased brain exposure in <i>Mdr1a/b­(−/−)</i> and <i>Mdr1<i>a</i>/1b/Bcrp1­(−/−)</i> KO and elacridar treated mice was accompanied by up to ∼65% suppression of the target (pErk) in brain tissue, compared to WT mice. By MALDI imaging, the cobimetinib signal intensity was relatively high and was dispersed throughout the brain of <i>Mdr1<i>a</i>/1b/Bcrp1­(−/−)</i> KO mice compared to low/undetectable signal intensity in WT mice. The efflux of cobimetinib by P-gp may have implications for the treatment of patients with brain tumors/metastases
    corecore