60 research outputs found

    X-ray crystal structure and specificity of the Plasmodium falciparum malaria aminopeptidase PfM18AAP

    No full text
    The malarial aminopeptidases have emerged as promising new drug targets for the development of novel anti-malarial drugs. The M18AAP of Plasmodium falciparum malaria is a metallo-aminopeptidase that we show demonstrates a highly restricted specificity for peptides with an N-terminal Glu or Asp residue. Thus the enzyme may function alongside other aminopeptidases in effecting the complete degradation or turnover of proteins, such as host hemoglobin, which provides a free amino acid pool for the growing parasite. Inhibition of PfM18AAP’s function using antisense RNA is detrimental to the intra-erythrocytic malaria parasite and, hence, it has been proposed as a potential novel drug target. We report the X-ray crystal structure of the PfM18AAP aminopeptidase and reveal its complex dodecameric assembly arranged via dimer and trimer units that interact to form a large tetrahedron shape that completely encloses the 12 active sites within a central cavity. The four entry points to the catalytic lumen are each guarded by 12 large flexible loops that could control substrate entry into the catalytic sites. PfM18AAP thus resembles a proteasomal-like machine with multiple active sites able to degrade peptide substrates that enter the central lumen. The Plasmodium enzyme shows significant structural differences around the active site when compared to recently determined structures of its mammalian and human homologs which provides a platform from which a rational approach to inhibitor design of new malaria-specific drugs can begin.<br

    Structure of the Plasmodium falciparum PfA-M17_BES (3KR4)

    No full text
    Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the X-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here we present the X-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with anti-malarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centres in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA-M17 active sites now permits a rational approach in the development of a novel class of two-target and/or combination anti-malarial therapy

    Structure of the Plasmodium falciparum PfA-M17 (3KQX)

    No full text
    <div>Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the X-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here we present the X-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with anti-malarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centres in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA-M17 active sites now permits a rational approach in the development of a novel class of two-target and/or combination anti-malarial therapy.</div><div><br></div><p></p

    Structure of the Plasmodium falciparum PfA-M17_Co4 (3KR5)

    No full text
    <div>Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the X-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here we present the X-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with anti-malarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centres in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA-M17 active sites now permits a rational approach in the development of a novel class of two-target and/or combination anti-malarial therapy.</div><div><br></div><p></p

    Structure of the Plasmodium falciparum PfA-M17_ZnZn (3KQZ)

    No full text
    <div>Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are essential for parasite viability and are validated therapeutic targets. We previously reported the X-ray crystal structure of the monomeric PfA-M1 and proposed a mechanism for substrate entry and free amino acid release from the active site. Here we present the X-ray crystal structure of the hexameric leucine aminopeptidase, PfA-M17, alone and in complex with two inhibitors with anti-malarial activity. The six active sites of the PfA-M17 hexamer are arranged in a disc-like fashion so that they are orientated inwards to form a central catalytic cavity; flexible loops that sit at each of the six entrances to the catalytic cavern function to regulate substrate access. In stark contrast to PfA-M1, PfA-M17 has a narrow and hydrophobic primary specificity pocket which accounts for its highly restricted substrate specificity. We also explicate the essential roles for the metal-binding centres in these enzymes (two in PfA-M17 and one in PfA-M1) in both substrate and drug binding. Our detailed understanding of the PfA-M1 and PfA-M17 active sites now permits a rational approach in the development of a novel class of two-target and/or combination anti-malarial therapy.</div><div><br></div><p></p

    A bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases

    No full text
    Malaria causes worldwide morbidity and mortality, and while chemotherapy remains an excellent means of malaria control, drug-resistant parasites necessitate the discovery of new antimalarials. Peptidases are a promising class of drug targets and perform several important roles during the P. falciparum erythrocytic life cycle. Herein, we report a multidisciplinary effort combining activity-based protein profiling, biochemical, and peptidomic approaches to functionally analyze two genetically essential P. falciparum metallo-aminopeptidases (MAPs), PfA-M1 and Pf-LAP. Through the synthesis of a suite of activity-based probes (ABPs) based on the general MAP inhibitor scaffold, bestatin, we generated specific ABPs for these two enzymes. Specific inhibition of PfA-M1 caused swelling of the parasite digestive vacuole and prevented proteolysis of hemoglobin (Hb)-derived oligopeptides, likely starving the parasite resulting in death. In contrast, inhibition of Pf-LAP was lethal to parasites early in the lifecycle, prior to the onset of Hb degradation suggesting that Pf-LAP has an essential role outside of Hb digestion.<br

    X-ray crystal structure of the streptococcal specific phage lysin PlyC

    No full text
    Bacteriophages deploy lysins that degrade the bacterial cell wall and facilitate virus egress from the host. When applied exogenously, these enzymes destroy susceptible microbes and, accordingly, have potential as therapeutic agents. The most potent lysin identified to date is PlyC, an enzyme assembled from two components (PlyCA and PlyCB) that is specific for streptococcal species. Here the structure of the PlyC holoenzyme reveals that a single PlyCA moiety is tethered to a ring-shaped assembly of eight PlyCB molecules. Structure-guided mutagenesis reveals that the bacterial cell wall binding is achieved through a cleft on PlyCB. Unexpectedly, our structural data reveal that PlyCA contains a glycoside hydrolase domain in addition to the previously recognized cysteine, histidine-dependent amidohydrolases/peptidases catalytic domain. The presence of eight cell wall-binding domains together with two catalytic domains may explain the extraordinary potency of the PlyC holoenyzme toward target bacteria

    X-ray crystal structure of MENT: evidence for functional loop-sheet polymers in chromatin condensation. (2H4R)

    No full text
    <div>Most serpins are associated with protease inhibition, and their ability to form loop-sheet polymers is linked to conformational disease and the human serpinopathies. Here we describe the structural and functional dissection of how a unique serpin, the non-histone architectural protein, MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein), participates in DNA and chromatin condensation. Our data suggest that MENT contains at least two distinct DNA-binding sites, consistent with its simultaneous binding to the two closely juxtaposed linker DNA segments on a nucleosome. Remarkably, our studies suggest that the reactive centre loop, a region of the MENT molecule essential for chromatin bridging in vivo and in vitro, is able to mediate formation of a loop-sheet oligomer. These data provide mechanistic insight into chromatin compaction by a non-histone architectural protein and suggest how the structural plasticity of serpins has adapted to mediate physiological, rather than pathogenic, loop-sheet linkages.</div><div><br></div><p></p

    The <i>csB</i> mutant shows increased colonisation in a mouse model of gastrointestinal tract infection, but no difference in weight loss, compared to the wild-type strain.

    No full text
    <p>Mice orally infected with spores from the <i>csB</i> mutant show high levels of spores shed from the gastrointestinal tract for the duration of the experiment (A). Mice were administered either wild-type (red circle), <i>csA</i> mutant (green square), <i>csB</i> mutant (blue arrowhead) or <i>csB</i> complemented (purple diamond) spores. Faecal spore load was determined for each mouse every day until 4 days post infection and is presented here with each point representing a single mouse. The results represent the average of at least four mice and error bars represent standard error of the mean. The limit of detection is shown as a dashed line (A). Mice administered wild-type spores (red) showed no difference in weight loss compared to mice administered <i>csA</i> (green) or <i>csB</i> (blue) spores or to uninfected mice (grey). The results represent the average of at least five mice and error bars represent standard error of the mean (B). The variability in faecal spore load between mice administered with the same strain was calculated by determining the deviation in faecal spore load of each mouse in comparison to the mean faecal spore load of mice administered with the same strain and is presented here as box plots with Tukey whiskers (C). Asterisks indicate statistical difference at *, <i>p</i> ≤ 0.05; **, <i>p</i> ≤ 0.01; ****, <i>p</i> ≤ 0.0001. Wild-type, WT; <i>csA</i> mutant, <i>csA</i>-M; <i>csB</i> mutant, <i>csB</i>-M; <i>csB</i> mutant complemented, <i>csB</i>-C.</p
    • …
    corecore