522 research outputs found

    Multiple Gaps in the Disk of the Class I Protostar GY 91

    Full text link
    We present the highest spatial resolution ALMA observations to date of the Class I protostar GY 91 in the ρ\rho Ophiuchus L1688 molecular cloud complex. Our 870 μ\mum and 3 mm dust continuum maps show that the GY 91 disk has a radius of \sim80 AU, and an inclination of \sim40^{\circ}, but most interestingly that the disk has three dark lanes located at 10 AU, 40 AU, and 70 AU. We model these features assuming they are gaps in the disk surface density profile and find that their widths are 7 AU, 30 AU, and 10 AU. These gaps bear a striking resemblance to the gaps seen in the HL Tau disk, suggesting that there may be Saturn-mass planets hiding in the disk. To constrain the relative ages of GY 91 and HL Tau, we also model the disk and envelope of HL Tau and find that they are of similar ages, although GY 91 may be younger. Although snow lines and magnetic dead zones can also produce dark lanes, if planets are indeed carving these gaps then Saturn-mass planets must form within the first \sim0.5 Myr of the lifetime of protoplanetary disks.Comment: 9 pages, 6 figures, 2 tables. Accepted for publication in Ap

    An ALMA Dynamical Mass Estimate of the Proposed Planetary-mass Companion FW Tau C

    Full text link
    Dynamical mass estimates down to the planet-mass regime can help to understand planet formation. We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm observations of FW Tau C, a proposed ~10 MJupM_{\rm Jup} planet-mass companion at ~330 au from the host binary FW Tau AB. We spatially and spectrally resolve the accretion disk of FW Tau C in 12{}^{12}CO (2-1). By modeling the Keplerian rotation of gas, we derive a dynamical mass of ~0.1 MM_\odot. Therefore, FW Tau C is unlikely a planet, but rather a low-mass star with a highly inclined disk. This also suggests that FW Tau is a triple system consisting of three ~0.1 MM_\odot stars.Comment: Accepted for publication in ApJ

    WL 17: A Young Embedded Transition Disk

    Full text link
    We present the highest spatial resolution ALMA observations to date of the Class I protostar WL 17 in the ρ\rho Ophiuchus L1688 molecular cloud complex, which show that it has a 12 AU hole in the center of its disk. We consider whether WL 17 is actually a Class II disk being extincted by foreground material, but find that such models do not provide a good fit to the broadband SED and also require such high extinction that it would presumably arise from dense material close to the source such as a remnant envelope. Self-consistent models of a disk embedded in a rotating collapsing envelope can nicely reproduce both the ALMA 3 mm observations and the broadband SED of WL 17. This suggests that WL 17 is a disk in the early stages of its formation, and yet even at this young age the inner disk has been depleted. Although there are multiple pathways for such a hole to be created in a disk, if this hole were produced by the formation of planets it could place constraints on the timescale for the growth of planetesimals in protoplanetary disks.Comment: 7 pages, 3 figures, 2 tables, accepted for publication in ApJ

    A VLA Survey For Faint Compact Radio Sources in the Orion Nebula Cluster

    Full text link
    We present Karl G. Janksy Very Large Array (VLA) 1.3 cm, 3.6 cm, and 6 cm continuum maps of compact radio sources in the Orion Nebular Cluster. We mosaicked 34 square arcminutes at 1.3 cm, 70 square arcminutes at 3.6 cm and 109 square arcminutes at 6 cm, containing 778 near-infrared detected YSOs and 190 HST-identified proplyds (with significant overlap between those characterizations). We detected radio emission from 175 compact radio sources in the ONC, including 26 sources that were detected for the first time at these wavelengths. For each detected source we fit a simple free-free and dust emission model to characterize the radio emission. We extrapolate the free-free emission spectrum model for each source to ALMA bands to illustrate how these measurements could be used to correctly measure protoplanetary disk dust masses from sub-millimeter flux measurements. Finally, we compare the fluxes measured in this survey with previously measured fluxes for our targets, as well as four separate epochs of 1.3 cm data, to search for and quantify variability of our sources.Comment: 13 pages, 6 figures, 4 tables, ApJ, in pres

    Evaluating circadian dysfunction in mouse models of Alzheimer\u27s disease: Where do we stand?

    Get PDF
    Circadian dysfunction has been described in patients with symptomatic Alzheimer\u27s disease (AD), as well as in presymptomatic phases of the disease. Modeling this circadian dysfunction in mouse models would provide an optimal platform for understanding mechanisms and developing therapies. While numerous studies have examined behavioral circadian function, and in some cases clock gene oscillation, in mouse models of AD, the results are variable and inconsistent across models, ages, and conditions. Ultimately, circadian changes observed in APP/PS1 models are inconsistent across studies and do not always replicate circadian phenotypes observed in human AD. Other models, including the 3xTG mouse, tau transgenic lines, and the accelerated aging SAMP8 line, show circadian phenotypes more consistent with human AD, although the literature is either inconsistent or minimal. We summarize these data and provide some recommendations to improve and standardize future studies of circadian function in AD mouse models
    corecore