We present the highest spatial resolution ALMA observations to date of the
Class I protostar WL 17 in the ρ Ophiuchus L1688 molecular cloud complex,
which show that it has a 12 AU hole in the center of its disk. We consider
whether WL 17 is actually a Class II disk being extincted by foreground
material, but find that such models do not provide a good fit to the broadband
SED and also require such high extinction that it would presumably arise from
dense material close to the source such as a remnant envelope. Self-consistent
models of a disk embedded in a rotating collapsing envelope can nicely
reproduce both the ALMA 3 mm observations and the broadband SED of WL 17. This
suggests that WL 17 is a disk in the early stages of its formation, and yet
even at this young age the inner disk has been depleted. Although there are
multiple pathways for such a hole to be created in a disk, if this hole were
produced by the formation of planets it could place constraints on the
timescale for the growth of planetesimals in protoplanetary disks.Comment: 7 pages, 3 figures, 2 tables, accepted for publication in ApJ