60,760 research outputs found

    Classification of Multipartite Entanglement via Negativity Fonts

    Full text link
    Partial transposition of state operator is a well known tool to detect quantum correlations between two parts of a composite system. In this letter, the global partial transpose (GPT) is linked to conceptually multipartite underlying structures in a state - the negativity fonts. If K-way negativity fonts with non zero determinants exist, then selective partial transposition of a pure state, involving K of the N qubits (K leq N) yields an operator with negative eigevalues, identifying K-body correlations in the state. Expansion of GPT interms of K-way partially transposed (KPT) operators reveals the nature of intricate intrinsic correlations in the state. Classification criteria for multipartite entangled states, based on underlying structure of global partial transpose of canonical state, are proposed. Number of N-partite entanglement types for an N qubit system is found to be 2^{N-1}-N+2, while the number of major entanglement classes is 2^{N-1}-1. Major classes for three and four qubit states are listed. Subclasses are determined by the number and type of negativity fonts in canonical state.Comment: 5 pages, No figures, Corrected typo

    Radiating spherical collapse with heat flow

    Get PDF
    We present here a simple model of radiative gravitational collapse with radial heat flux which describes qualitatively the stages close to the formation of a superdense cold star. Starting with a static general solution for a cold star, the model can generate solutions for the earlier evolutionary stages. The temporal evolution of the model is specified by solving the junction conditions appropriate for radiating gravitational collapse.Comment: 13 pages, including 3 figures, submitted to IJMP-

    Towards QCD thermodynamics using exact chiral symmetry on lattice

    Get PDF
    The thermodynamics of massless ideal gas of overlap quarks has been investigated numerically for both zero and nonzero baryon chemical potential ÎĽ\mu. While the parameter M has been shown to be irrelevant in the continuum limit, it is shown numerically that the continuum limit can be reached with relatively coarser lattices for certain range of M. Numerical limitation of the existing method of introduction of chemical potential in the overlap formalism is discussed. We have also studied the energy density of free domain wall fermions in the absence of ÎĽ\mu and estimated the extent of lattice in the fifth dimension L5L_5 for which the overlap results are recovered. Interestingly, this value of L5L_5 is also minimum for the same range of M found in the overlap case.Comment: 5 pages, 4 figures, to appear in the proceedings of the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions: Quark Matter 2008 (QM2008

    The BCS theory of q-deformed nucleon pairs - qBCS

    Full text link
    We construct a coherent state of q-deformed zero coupled nucleon pairs distributed in several single-particle orbits. Using a variational approach, the set of equations of qBCS theory, to be solved self consistently for occupation probabilities, gap parameter Delta, and the chemical potential lambda, is obtained. Results for valence nucleons in nuclear degenerate sdg major shell show that the strongly coupled zero angular momentum nucleon pairs can be substituted by weakly coupled q-deformed zero angular momentum nucleon pairs. A study of Sn isotopes reveals a well defined universe of (G, q) values, for which qBCS converges. While the qBCS and BCS show similar results for Gap parameter Delta in Sn isotopes, the ground state energies are lower in qBCS. The pairing correlations in N nucleon system, increase with increasing q (for q real).Comment: 8 pages, REVTEX, 3 eps figure

    Noise Robust Blind System Identification Algorithms Based On A Rayleigh Quotient Cost Function

    Get PDF
    • …
    corecore