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ABSTRACT
An important prerequisite for acoustic multi-channel

equalization for speech dereverberation involves the iden-
tification of the acoustic channels between the source and the
microphones. Blind System Identification (BSI) algorithms
based on cross-relation error minimization are known to mis-
converge in the presence of noise. Although algorithms have
been proposed in the literature to improve robustness to noise,
the estimated room impulse responses are usually constrained
to have a flat magnitude spectrum. In this paper, noise robust
algorithms based on a Rayleigh quotient cost function are
proposed. Unlike the traditional algorithms, the estimated
impulse responses are not always forced to have unit norm.
Experimental results using simulated room impulse responses
and several SNRs show that one of the proposed algorithms
outperforms competing algorithms in terms of normalized
projection misalignment.

Index Terms— Blind System Identification, Rayleigh
quotient, Least Mean Squares (LMS), noise robustness, dere-
verberation

1. INTRODUCTION

Capturing a sound source within an enclosed environment
with microphones placed at a distance from the sound source
typically results in recordings that are corrupted by reverbera-
tion, i.e. acoustic reflections against walls and surfaces within
the enclosure. While reverberation may be desirable in music,
it may degrade the quality and the intelligibility of speech [1],
especially in the presence of additive noise, so that derever-
beration is needed.

Since the recorded microphone signals consist of super-
imposed delayed and attenuated copies of different sound
events, each microphone signal can be modeled as a source
signal filtered by an acoustic channel represented by a Room
Impulse Response (RIR). Consequently, dereverberation can
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potentially be achieved by first blindly estimating the RIRs
and then equalizing the reverberant signal. Perfect derever-
beration can be achieved [2] provided that the estimates of
the RIRs are perfect. Algorithms for designing equalizers
that are more robust to estimation errors have been proposed
in [3] or [4] for example.

In the recent literature, different adaptive algorithms for
BSI of RIRs have been proposed [5–9], which are based on
minimizing the cross-relation error cost function. However,
it has been reported that adaptive BSI algorithms such as
the Multi-Channel Least Mean Square (MCLMS) [5] or the
Normalized Multichannel Frequency Domain Least Mean
Squares (NMCFLMS) [6] misconverge in the presence of ad-
ditive noise [10]. To improve robustness to noise, the method
proposed in [11] assumes that the delay and magnitude of
the direct path are known for each RIR. In [9] and [8], a
spectral flatness constraint of the magnitude spectrum of
the estimated RIRs is added to the cost function. Although
improvements have been observed, the spectral flatness con-
straint may be too restrictive as the magnitude spectrum
of a RIR is not necessarily flat. Accordingly, the Robust
NMCFLMS (RNMCFLMS) [9] may lead to an estimation
which is a trade-off between minimizing the cross-relation
error and satisfying the constraint.

In this paper, novel adaptive BSI algorithms relying on a
Rayleigh quotient cost function are proposed. In Section 2,
an overview of BSI from an algebraic point of view is pre-
sented. The MCLMS and NMCFLMS algorithms are briefly
reviewed in Section 3. Several novel variants of the MCLMS
algorithm are presented in Section 4. Section 5 shows the
results of simulations, comparing the performance of the pro-
posed algorithms against the MCLMS, the NMCFLMS and
the RNMCFLMS algorithms.

2. BSI BACKGROUND

2.1. Signal model and assumptions

We consider an acoustic system with M microphones and a
single sound source. The noisy and reverberant signal ym(n)



at the mth microphone, m ∈ {1, . . . ,M}, can be written as:

xm(n) = hm ∗ s(n), (1)

ym(n) = xm(n) + νm(n) (2)

where s(n) is the source signal, hm the RIR between the
source and the mth microphone, which is assumed to be
a fixed Finite Impulse Response (FIR)-filter with length L,
νm(n) the additive noise component at the mth microphone
and xm(n) the reverberant noiseless signal at the mth micro-
phone.

With reference to the identifiability conditions [13], we
assume that the source has a full-rank covariance matrix and
the RIRs have no common zeros.

2.2. Cross-relation error

The MCLMS and NMCFLMS algorithms [5, 6] exploit the
Single-Input-Multiple-Output (SIMO) structure of the prob-
lem in (1) to estimate the RIRs.

The cross-relation error χ(n) is defined as:

χ(n) =

M−1∑
i=1

M∑
j=i+1

e2ij(n), (3)

eij(n) = yT
i (n)ĥj(n)− yT

j (n)ĥi(n) (4)

where yi(n) =
[
yi(n) yi(n− 1) . . . y(n− L+ 1)

]T
and ĥi(n) =

[
ĥi(0) ĥi(1) . . . ĥi(L− 1)

]T
is an esti-

mate of hi. Estimates ĥ(n) = [ĥT
1 (n), ĥ

T
2 (n), . . . , ĥ

T
M (n)]T

of the stacked RIRs h are obtained by minimizing the expec-
tation of χ(n), subject to the constraint ĥ 6= 0ML×1, where
0ML×1 is the null vector of size ML.

This minimization problem is equivalent to computing the
eigenvector corresponding to the smallest eigenvalue of the
expectation of the cross-relation matrix R̂(n) [5] given by

R̂ =


∑M

i=2 R̂yiyi
−R̂y2y1

. . . −R̂yMy1

−R̂y1y2

∑M
i 6=2 R̂yiyi

. . . −R̂yMy2

...
...

. . .
...

−R̂y1yM
−R̂y1yM

. . .
∑M−1

i=1 R̂yiyi


(5)

where R̂yiyj = yiy
T
j and the time index n has been dropped.

We will refer to the expectation of R̂(n) as R.
Noticing that e2ij(n) = e2ji(n) and eii(n) = 0, the cross-

relation error χ(n) is equal to 1
2

∑M
i=1

∑M
j=1 e

2
ij(n). Expand-

ing e2ij(n) using (4) gives

χ(n) =

M∑
i=1

M∑
j=1

ĥT
j R̂yiyi

ĥT
j − ĥT

i R̂yiyj
ĥT
j , (6)

⇒ χ(n) = ĥT (n)R̂(n)ĥ(n). (7)

2.3. Effect of Additive noise

In the absence of additive noise, the null space of the matrix
R is of dimension 1 and is spanned by the stacked RIRs h
[13]. However, in the presence of noise, this property does
not hold anymore as R is the sum of the expectation of the
cross-relation matrix of the noiseless reverberant signal Rxx
and of the noise component Rνν , assuming that νm(n) and
xm(n) are uncorrelated [14].

In the case of additive spatially white Gaussian noise,
Rνν is proportional to the identity matrix of size ML×ML
and the eigenvalues of Rxx are shifted by the noise power,
while the associated eigenvectors remain unchanged.

3. EXISTING ALGORITHMS

In this section, we analyze the cost function employed in two
existing algorithms that adaptively solve the minimization
problem in (3).

3.1. MCLMS

It can be shown that the MCLMS algorithm proposed in [5]
solves the eigenvector estimation problem (5) by minimizing
the Rayleigh quotient (RQ) cost function JRQ(n) given by

JRQ(n) =
ĥT (n)R̂(n)ĥ(n)

ĥT (n)ĥ(n)
, (8)

using an LMS-type adaptive algorithm.
In the MCLMS algorithm, the estimated stacked RIR vec-

tor ĥ(n) is forced to have unit-norm after each iteration. The
update equation is given by

ĥ(n+ 1) =
ĥ(n)− µ∇JRQ(n)

||ĥ(n)− µ∇JRQ(n)||2
, (9)

∇JRQ(n) =
2

ĥT (n)ĥ(n)

{
R̂(n)ĥ(n)− χ(n)ĥ(n)

}
, (10)

where ∇JRQ(n) is the gradient of the RQ cost function
JRQ(n) and µ is a small constant positive step-size.

3.2. NMCFLMS

In [6], the implementation is performed in the frequency do-
main to efficiently compute convolutions. Following the same
strategy as above to reformulate the cross-relation error into a
quadratic product, it can be shown that the instantaneous cost
function, the expectation of which is minimized, is given by

JNMCFLMS(b) = ĥ
H
(b)R̂(b)ĥ(b) (11)

where (.) denotes a complex-valued quantity, the superscript

H denotes the conjugate transpose operator, ĥ(b) = IM×M⊗



FL×Lĥ(b) and R̂(b) = (IM×M ⊗ FL×L)R̂(b)(IM×M ⊗
F−1L×L). The matrices IM×M , FL×L and R̂(b) respectively
correspond to the identity matrix of size M × M , the dis-
crete Fourier transform matrix of size L × L and the cross-
relation matrix R̂(n) averaged over L samples. The ⊗ op-
erator denotes the Kronecker product and b corresponds to a
time-frame block index.

The NMCFLMS algorithm implements a modified block
LMS, the processing of which is performed in the frequency
domain. However, note that the quadratic cost function in (11)
significantly differs from the RQ cost function JRQ(n) in (8)
as the denominator is equal to 1.

To increase the convergence rate, a preconditioner P (b)
approximating the inverse of the Hessian of JNMCFLMS(b) is
used. The update equation is therefore:

ĥ(b+ 1) =
ĥ(b)− µP (b)∇JNMCFLMS(b)

||ĥ(b)− µP (b)∇JNMCFLMS(b)||2
(12)

where ∇JNMCFLMS = R̂(b)ĥ(b) and the expression for P (b)
can be found in [6].

4. PROPOSED ALGORITHMS

In this section, we propose novel adaptive BSI algorithms that
are based on the RQ cost function in (8), by using different
approximations for R with or without imposing a unit-norm
constraint.

In the update equation of an LMS-based procedure, the
direction of the descent steers the adaption towards a point
minimizing the cost function. In the case where R is approxi-
mated by its instantaneous value R̂(n), as e.g. in the MCLMS
algorithm, there exists a high-dimensional subspace which
spans vectors nullifying JRQ(n). When no noise is present,
the stacked RIRs h lie in the null space of R̂(n) for all n.
However, this is not guaranteed in the presence of noise.

Moreover, in the presence of noise, the cost function in
(11) achieves its minimum only at the null vector such that
the normalization in (12) is required to avoid this trivial solu-
tion. On the other hand, the RQ cost function in (8) implicitly
excludes the null vector so that the normalization in (9) is in
principle not necessary.

We therefore propose a class of adaptive algorithms based
on the RQ cost function in (8). The different variants differ
in the approximation of R (sample-based vs. block-based)
as well as the presence or absence of a unit-norm constraint,
giving rise to the Sample-based RQ (SURQ), the Block-based
Normalized RQ (BNRQ) and the Block-based Unconstrained
RQ (BURQ) algorithms (see Table 1). The corresponding up-
date equations are respectively given by

ĥ(n+ 1) = ĥ(n)− µ∇JRQ(n), (13)

ĥ(b+ 1) =
ĥ(b)− µ∇JRQ(b)

||ĥ(b)− µ∇JRQ(b)||2
, (14)

ĥ(b+ 1) = ĥ(b)− µ∇JRQ(b) (15)

where

∇JRQ(b) =
2

ĥT (b)ĥ(b)

{
R̂(b)ĥ(b)− χ(b)ĥ(b)

}
, (16)

with R̂(b) = 1
B

∑B−1
l=0 R̂(bnoff + l), B and noff respec-

tively representing the block size and a sliding offset and
χ(b) = ĥT (b)R̂(b)ĥ(b).

Algorithm Approximation of R Additional step
MCLMS (9) Sample-based Forced unit-norm
SURQ (13) Sample-based None
BNRQ (14) Block-based Forced unit-norm
BURQ (15 Block-based None

Table 1: Rayleigh quotient based algorithms for BSI

5. SIMULATIONS

In this section, the performance of the proposed RQ-based
algorithms is investigated and compared with the existing
MCLMS, NMCFLMS and RNMCFLMS algorithms. In par-
ticular, the robustness to additive spatially white Gaussian
noise and the convergence rate are evaluated.

5.1. Setup

The algorithms were evaluated for two RIR lengths (L =
256 and L = 500), two different numbers of microphones,
(M = 2 and M = 5), and two values of Signal-to-Noise
Ratio (SNR) (SNR = 15 dB and SNR = 10 dB). For each
combination of L, M and SNR, the algorithms were eval-
uated for 50 realizations of additive noise. The RIRs were
generated using the image method [15] for a shoebox-shaped
room of dimensions 5m×6m×3m and a reverberation time
T60 = 0.5 s. The lengths L were then fixed by truncating the
obtained RIRs to the desired length. The input signal was a
white Gaussian noise with a duration of 600 s, which is un-
correlated with the additive noise.

For the BURQ and BNRQ algorithms, a sliding rectan-
gular window of length B = 2L, overlapping by noff = L
samples, was used. The different step-sizes were empirically
optimized for each SNR such that no misconverge could be
observed for 20 s of input signal while displaying the high-
est initial convergence rate. The performance of the SURQ
algorithm is not shown here as it had stability issues.



The BSI accuracy was evaluated using the scale-independent
Normalized Projection Misalignment (NPM) [1] computed
as follows:

NPM(ĥ,h) = 10 log10

 ||h− ĥTh
ĥT ĥ

ĥ||22
hTh

 (dB). (17)

5.2. Results

Figures 1 and 2 show box plots of the mean NPMs forM = 2
and M = 5, where only the samples after 100 s were taken
into account (when the algorithms were assumed to have con-
verged). Unlike the MCLMS, NMCFLMS and BNRQ algo-
rithms, which seem to have misconverged, the RNMCFLMS
algorithm seems to have converged in NPM as the interquar-
tile range as well as the spread in NPMs are less than 1 dB.
The BURQ algorithm consistently achieves lower NPMs on
average.

By comparing the box plots for a fixed SNR and differ-
ent lengths L in Figures 1 and 2, the NPMs increase as L
increases. This is due to the fact that near-common zeros are
more likely for larger values of L and fixedM . By comparing
the box plots for fixed SNR and L but different M in Figures
1 and Figure 2, the NPMs decreases as M increases. This is
due to the fact that as M increases, near-common zeros of the
RIRs are less likely to appear.

While Figures 1 and 2 suggest that the BURQ algorithm
consistently outperforms the other algorithms, NPM behavior
over time, including the initial convergence rate, cannot be an-
alyzed from these figures. Figure 3 provides a more detailed
analysis for SNR = 15 dB, L = 500,M = 5 by displaying
the NPMs against time for the considered algorithms. The
solid lines represent the mean NPMs, while the dotted lines
show the 1st and 9th percentile. From this figure it can be ob-
served that, although the MCLMS algorithm has the highest
initial convergence rate, it clearly misconverges. In addition,
also the NMCFLMS and the BNRQ algorithms misconverge,
whereas the RNMCFLMS and the BURQ algorithms con-
verge. Although the RNMCFLMS algorithm appears to have
a faster initial convergence rate than the BURQ algorithm, the
BURQ algorithm clearly outperforms the RNMCFLMS algo-
rithm as the NPMs keep decreasing as time increases. For the
other combinations of considered SNR, L and M , a similar
behavior of the NPMs has been observed.

6. CONCLUSION

In this paper, we have proposed novel adaptive BSI algo-
rithms, which are based on a Rayleigh quotient cost function.
Different variants have been proposed. either sample or
block-based, with or without a unit-norm constraint on the
stacked RIR vector. Through simulations, the unconstrained
optimization algorithm, referred as BURQ, has shown to be
noise-robust to additive spatially white Gaussian noise and to
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Fig. 1: Box plot of the mean NPMs for t > 100 s and M = 2

outperform the RNMCFLMS algorithm. Moreover, the NPM
consistently decreases with time while the RNMCFLMS
seems, at best, to achieve some limit and at worse to have an
initial convergence followed by misconvergence.
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