1 research outputs found
Analysis Of Variation In The Number Of MFCC Features In Contrast To LSTM In The Classification Of English Accent Sounds
Various studies have been carried out to classify English accents using traditional classifiers and modern classifiers. In general, research on voice classification and voice recognition that has been done previously uses the MFCC method as voice feature extraction. The stages in this study began with importing datasets, data preprocessing of datasets, then performing MFCC feature extraction, conducting model training, testing model accuracy and displaying a confusion matrix on model accuracy. After that, an analysis of the classification has been carried out. The overall results of the 10 tests on the test set show the highest accuracy value for feature 17 value of 64.96% in the test results obtained some important information, including; The test results on the MFCC coefficient values of twelve to twenty show overfitting. This is shown in the model training process which repeatedly produces high accuracy but produces low accuracy in the classification testing process. The feature assignment on MFCC shows that the higher the feature value assignment on MFCC causes a very large sound feature dimension. With the large number of features obtained, the MFCC method has a weakness in determining the number of features