28,199 research outputs found
Two-mode heterodyne phase detection
We present an experimental scheme that achieves ideal phase detection on a
two-mode field. The two modes and are the signal and image band modes
of an heterodyne detector, with the field approaching an eigenstate of the
photocurrent . The field is obtained by means of a
high-gain phase-insensitive amplifier followed by a high-transmissivity
beam-splitter with a strong local oscillator at the frequency of one of the two
modes.Comment: 3 pages, 1 figur
Malmheden's theorem revisited
In 1934 H. Malmheden discovered an elegant geometric algorithm for solving
the Dirichlet problem in a ball. Although his result was rediscovered
independently by Duffin 23 years later, it still does not seem to be widely
known. In this paper we return to Malmheden's theorem, give an alternative
proof of the result that allows generalization to polyharmonic functions and,
also, discuss applications of his theorem to geometric properties of harmonic
measures in balls in Euclidean spaces
Cold Atomic Collisions: Coherent Control of Penning and Associative Ionization
Coherent Control techniques are computationally applied to cold (1mK < T < 1
K) and ultracold (T < 1 microK) Ne*(3s,3P2) + Ar(1S0) collisions. We show that
by using various initial superpositions of the Ne*(3s,3P2) M = {-2,-1,0,1,2}
Zeeman sub-levels it is possible to reduce the Penning Ionization (PI) and
Associative Ionization (AI) cross sections by as much as four orders of
magnitude. It is also possible to drastically change the ratio of these two
processes. The results are based on combining, within the "Rotating Atom
Approximation", empirical and ab-initio ionization-widths.Comment: 4 pages, 2 tables, 2 figure
Quantum Noise in the Collective Abstraction Reaction A+B AB+B
We demonstrate theoretically that the collective abstraction reaction A+B AB+B can be realized efficiently with degenerate bosonic or fermionic
matter waves. We show that this is dominated by quantum fluctuations, which are
critical in triggering its initial stages with the appearance of macroscopic
non-classical correlations of the atomic and molecular fields as a result. This
study opens up a promising new regime of quantum degenerate matter-wave
chemistry.Comment: 4 pages, 3 figures, publishe
Spin Polarized Asymmetric Nuclear Matter and Neutron Star Matter Within the Lowest Order Constrained Variational Method
In this paper, we calculate properties of the spin polarized asymmetrical
nuclear matter and neutron star matter, using the lowest order constrained
variational (LOCV) method with the , , and
potentials. According to our results, the spontaneous phase transition to a
ferromagnetic state in the asymmetrical nuclear matter as well as neutron star
matter do not occur.Comment: 21 pages, 11 figure
Propagation of cosmic rays and new evidence for distributed acceleration
The origin and propagation of cosmic rays in terms of conventional and supplementary newer assumptions were explored. Cosmic rays are considered to be accelerated by supernoava shock waves and to traverse clouds in the source region. After rigidity-dependent escape from these clouds into interstellar space, cosmic rays are further accelerated by the weakened shocks of old supernova remnants and then pass through additional material. The distributed acceleration hypothesis is discussed with emphasis on recent data on the abundances of cosmic-ray isotopes of N above 1 GeV/u and of He near 6 GeV/u
Differential Rotation in Neutron Stars: Magnetic Braking and Viscous Damping
Diffferentially rotating stars can support significantly more mass in
equilibrium than nonrotating or uniformly rotating stars, according to general
relativity. The remnant of a binary neutron star merger may give rise to such a
``hypermassive'' object. While such a star may be dynamically stable against
gravitational collapse and bar formation, the radial stabilization due to
differential rotation is likely to be temporary. Magnetic braking and viscosity
combine to drive the star to uniform rotation, even if the seed magnetic field
and the viscosity are small. This process inevitably leads to delayed collapse,
which will be accompanied by a delayed gravitational wave burst and, possibly,
a gamma-ray burst. We provide a simple, Newtonian, MHD calculation of the
braking of differential rotation by magnetic fields and viscosity. The star is
idealized as a differentially rotating, infinite cylinder consisting of a
homogeneous, incompressible conducting gas. We solve analytically the simplest
case in which the gas has no viscosity and the star resides in an exterior
vacuum. We treat numerically cases in which the gas has internal viscosity and
the star is embedded in an exterior, low-density, conducting medium. Our
evolution calculations are presented to stimulate more realistic MHD
simulations in full 3+1 general relativity. They serve to identify some of the
key physical and numerical parameters, scaling behavior and competing
timescales that characterize this important process.Comment: 11 pages. To appear in ApJ (November 20, 2000
Implementing Quantum Gates by Optimal Control with Doubly Exponential Convergence
We introduce a novel algorithm for the task of coherently controlling a
quantum mechanical system to implement any chosen unitary dynamics. It performs
faster than existing state of the art methods by one to three orders of
magnitude (depending on which one we compare to), particularly for quantum
information processing purposes. This substantially enhances the ability to
both study the control capabilities of physical systems within their coherence
times, and constrain solutions for control tasks to lie within experimentally
feasible regions. Natural extensions of the algorithm are also discussed.Comment: 4+2 figures; to appear in PR
- …