18 research outputs found

    Research on borehole stability of shale based on seepage-stress-damage coupling model

    Get PDF
    In oil drilling, one of the most complicated problems is borehole stability of shale. Based on the theory of continuum damage mechanics, a modified Mohr-Coulomb failure criterion according to plastic damage evolution and the seepage-stress coupling is established. Meanwhile, the damage evolution equation which is based on equivalent plastic strain and the permeability evolution equation of shale are proposed in this paper. The physical model of borehole rock for a well in China western oilfield is set up to analyze the distribution of damage, permeability, stress, plastic strain and displacement. In the calculation process, the influence of rock damage to elastic modulus, cohesion and permeability is involved by writing a subroutine for ABAQUS. The results show that the rock damage evolution has a significant effect to the plastic strain and stress in plastic zone. Different drilling fluid density will produce different damage in its value, range and type. This study improves the theory of mechanical mechanism of borehole collapse and fracture, and provides a reference for the further research of seepage-stress-chemical-damage coupling of wall rock

    Perbedaan Pengaruh Penerapan Metode inquiri dan Eksperimen terhadap Hasil Belajar IPA ditinjau dari Keaktifan Siswa Kelas IV SD di Dabin V Kecamatan Purwodadi Tahun Pelajaran 2012/2013

    Get PDF
    Penelitian ini bertujuan untuk mengetahui perbedaan pengaruh penggunaan metode inquiry dan metode eksperimen terhadap hasil belajar  ditinjau dari keaktifan belajar siswa kelas IV pada mata pelajaran IPA SD Negeri  Dabin V Kec. Purwodadi Kab. Grobogan.Subjek dalam penelitian ini adalah siswa kelas IV SD Negeri 1 Candisari  tahun ajaran 2012/2013 yang berjumlah 85 siswa, yang terdiri dari 27 siswa SD Negeri I Candisari  dengan perlakuan metode eksperimen, 30 Siswa dari SD Negeri II Candisari dengan menggunakan metode Inquiry sedangkan untuk kelas Uji coba dari SD Negeri I Genuksuran dengan jumlah Siswa 28. Teknik pengumpulan data yang digunakan adalah menggunakan tes.Data penelitian dianalisis dengan menggunakan teknik analisis kuantitatif.Hasil penelitian menunjukan bahwa metode inquiry dan eksperimen berpengaruh terhadap hasil belajar yang di tinjau dari keaktifan belajar siswa kelas IV pada mata pelajaran IPA SD Negeri Dabin V. Hal ini ditunjukan dari hasil perhitungan dengan menggunakan Uji Anava 2X3. Keyword: metode inquiry ,metode eksperimen, mata pelajaran IP

    Properties of Crushed Red-Bed Soft Rock Mixtures Used in Subgrade

    Get PDF
    Slaking red-bed soft rocks are widely distributed in the south of Anhui Province, China, and several highways will go through this area. It is important to evaluate their physical and mechanical characteristics for the purpose of using this kind of soft rocks as materials for road construction. In this paper, the compacting tests, the resilient modulus tests, the California bearing ratio (CBR) tests, and permeability tests have been carried out on crushed red-bed soft rock mixtures. The test results showed that, for a given degree of compaction, the resilient modulus decreases linearly with the increase of moisture content. For a given moisture content, the resilient modulus and CBR values increase linearly with the increase of compaction degree, while the soaking swelling, water absorption capacity, and permeability coefficient decrease linearly. In other words, the strength and water stability are enhanced with the increase of the degree of compaction. The results demonstrate that the crushed red-bed soft rock mixtures can be directly used as materials for the highway construction by taking corresponding measures

    Modelling of Time-Dependent Wellbore Collapse in Hard Brittle Shale Formation under Underbalanced Drilling Condition

    No full text
    In recent years, the lithologic traps in a mid-depth formation are the focus of oil or gas exploration and development for eastern oilfields in China. The Shahejie Formation develops thick hard brittle shale, and the wellbore instability problem is prominent due to obvious hydration effect for long immersion time during drilling. Through the analysis of laboratory tests and field test results of physical and chemical properties and microstructure and mechanical properties of hard brittle shale, the instability mechanism is discussed for the wellbore in the shale formation. To simulate the whole process of progressive collapse of a wellbore in a hard brittle shale formation, a coupled hydraulic-mechanical-chemical (HMC) model is developed and this model is compiled with ABAQUS software as the solver. Then the coupled HMC model is applied to simulate the progressive evolution process of wellbore collapse in a hard brittle shale formation, and the influence of different parameters on the progressive failure of the wellbore is analysed. The results show that the wellbore enlargement rate increases with the drilling fluid immersion time and the influence of different parameters on the wellbore enlargement rate is different. The water absorption diffusion coefficient and the activity of the drilling fluid have the most obvious influence on the expansion of the wellbore, and the sensitivity is strong. The permeability of shale has little effect on the wellbore enlargement rate. The calculated progressive failure process of the wellbore is basically consistent with that of the actual drilling

    Development of a New Inflatable Controlled Anchor System and Experimental Study of pull-out Capacity

    No full text
    Considering the deficiency of traditional anchors, we propose a new type of inflatable controlled anchor system in this paper. The working mechanism and its structural composition of newly designed inflatable controlled device are discussed in detail. To investigate the performance and pull-out capacity of this new anchor system, a series of field tests were carried out under different inflation pressure conditions. By comparing these test results with those of traditional grouting anchors, a full-process constitutive model of anchor-soil interface is proposed to depict the pull-out characteristics of the inflatable controlled anchor. The results show that the ultimate bearing capacity of the inflatable controlled anchor is greater than that of the traditional grouting anchor when the inflation pressure is greater than 0.2 MPa and the ultimate bearing capacity of this new anchor improves obviously with the increase of inflation pressure. When the inflation pressure reaches 0.4 MPa, the ultimate bearing capacity of the inflatable controlled anchor is 2.08 times that of the traditional grouting anchor. Through comparison with the experimental curves, the results of model calculation indicate that the proposed anchor-soil interface constitutive equation can describe the pull-out characteristics of the inflatable controlled anchor. The designed controlled anchor has the advantages of no grouting, recyclability, rapid formation of anchoring force, and adjustable anchoring force

    Coupled THM Modelling of Wellbore Stability with Drilling Unloading, Fluid Flow, and Thermal Effects Considered

    No full text
    Both overbalanced drilling and underbalanced drilling will lead to the change of pore pressure around wellbore. Existing research is generally based on hydraulic-mechanical (HM) coupling and assumes that pore pressure near the wellbore is initial formation pressure, which has great limitations. According to the coupled theory of mixtures for rock medium, a coupled thermal-hydraulic-mechanical (THM) model is proposed and derived, which is coded with MATLAB language and ABAQUS software as the solver. Then the wellbore stability is simulated with the proposed model by considering the drilling unloading, fluid flow, and thermal effects between the borehole and the formation. The effect of field coupling on pore pressure, stress redistribution, and temperature around a wellbore has been analyzed in detail. Through the study of wellbore stability in different conditions, it is found that (1) for overbalanced drilling, borehole with impermeable wall is more stable than that of ones with permeable wall and its stability can be improved by reducing the permeable ability of the wellbore wall; (2) for underbalanced drilling, the stability condition of permeable wellbore is much higher than that of impermeable wellbore; (3) the temperature has important influence on wellbore stability due to the variation of pore pressure and thermal stress; the wellbore stability can be improved with cooling drilling fluid for deep well. The present method can provide references for coupled thermal-hydraulic-mechanical-chemical (THMC) process analysis for wellbore

    Coupled Large Scale Hydromechanical Modelling for Caprock Failure Risk Assessment of Gas Storage in Aquifer

    No full text
    The rapidly increasing demand for the consumption of natural gas has attracted the interests to store natural gas in aquifer reservoir. However, natural gas injected into the aquifer reservoir, which could cause ground surface deformation and mechanical integrity destruction of caprock. Taking the aquifer gas storage of S trap as the research object, according to the geological structure and hydrogeological information, a coupling large-scale hydromechanical model is established to evaluate the damage risk of the gas reservoir in S aquifer. The proposed methodology is based on the development of fluid-solid coupling and application of FEM. The different failure mechanisms of S aquifer gas storage caprock can be evaluated on the basis of the tensile failure criterion and Mohr-Coulomb shear failure criterion. To analyze the change of caprock in gas injection and production process more clearly, a reference model is defined as an ideal calculation condition to discuss the mechanical response, pore pressure variation, and surface deformation characteristics of the caprock during injection and production. On this basis, the second scheme of sensitivity analysis is defined. The pressure injection rate, reservoir parameters, in situ stress, and other factors are considered, respectively, and the influence of different input parameters on mechanical stability and surface deformation of caprock is analyzed. Finally, the mechanical stability is analyzed and combined the above two criteria to predict the upper limit injection pressure of S. Simulation results show that the permeability and in situ stress have a significant influence on ground surface deformation and mechanical integrity of caprock, but Young’s modulus and Poisson’s ratio can be ignored; the upper limit pressure coefficient of S is 1.908

    A Caprock Evaluation Methodology for Underground Gas Storage in a Deep Depleted Gas Reservoir: A Case Study for the X9 Lithologic Trap of Langgu Sag, Bohai Bay Basin, China

    No full text
    The evaluation of caprocks’ sealing capacity is exceedingly important for depleted gas reservoirs to be reconstructed into gas storage. In this paper, based on the physical sealing mechanism of caprock, four aspects of ten indexes of caprock quality evaluation were firstly selected, and the related classification standards were established. Secondly, based on the rock mechanical sealing mechanism, elastic and plastic indexes were selected to characterize the mechanical brittleness of caprock, and a brittleness evaluation method of caprock based on complete stress-strain curves was established. Then, a systematic comprehensive evaluation model (including 5 aspects and 12 evaluation indexes) for the sealing capacity of gas storage caprock was proposed, and the analytic hierarchy process (AHP) was used to determine the weight of the 12 indexes in the evaluation model, and the formula for calculating the suitability of the caprock sealing capacity was established. Finally, the geological data, laboratory, and field test data, including X-ray diffraction, poro-permeability test, displacement pressure, and tri-axial compression test, were used for the caprock sealing capacity evaluation of the X9 depleted gas reservoir, and the result from this model showed that the caprock quality is suitable for underground gas storage

    Experimental Research and Sensitivity Analysis of Mudstone Similar Materials Based on Orthogonal Design

    No full text
    Due to the strong hydration sensitivity of mudstone, drilling of deep mudstone is difficult and pricy, which results in the study on its physical and mechanical properties inseparable from similar material tests. On these bases, triaxial compression and Brazilian tensile tests of the original mudstone drilled from the caprock of the D5 aquifer structure are carried out. Then, orthogonal experiments of mudstone similar materials with river sand and barite powder as aggregate and cement and gypsum as the binder are conducted, which include 3 factors that, respectively, are mass ratio of aggregate to binder, mass ratio of cement to gypsum, and barite powder content, and each factor contains 5 levels, totalling 25 groups of 150 samples. By comparing the results of mudstone and artificial samples made of similar materials, it is obvious that artificial samples and mudstone are significantly similar in terms of density, compressive strength, elastic modulus, and compressive strength when the aggregate-binder ratio is about 4, 8, 5, and 4, respectively. Further sensitivity analysis showed that the aggregate-binder ratio played a major role in controlling the properties of artificial samples, while the sensitivity of different parameters to the cement-gypsum ratio and barite content was different. The results indicate that the selected raw materials and their proportion are feasible, which can meet similar requirements and can be a reference for similar material experimental research of target mudstone
    corecore