3 research outputs found

    Hierarchical Self-Assembly of Bile-Acid-Derived Dicationic Amphiphiles and Their Toxicity Assessment on Microbial and Mammalian Systems

    No full text
    A thiol-yne click chemistry approach was adopted for the first time to prepare highly water-soluble bile acid derived dicationic amphiphiles. The synthesized amphiphiles dicationic cysteamine conjugated cholic acid (DCaC), dicationic cysteamine conjugated deoxycholic acid (DCaDC), and dicationic cysteamine conjugated lithocholic acid (DCaLC) exhibited hierarchically self-assembled microstructures at various concentrations in an aqueous medium. Interestingly at below critical micellar concentration (CMC) the amphiphiles showed distinct fractal patterns such as fractal grass, microdendrites and fern leaf like fractals for DCaC, DCaDC and DCaLC respectively. The fractal dimension (Df) analysis indicated that the formation of fractal like aggregates is a diffusion limited aggregation (DLA) process. The preliminary aggregation studies such as determination of CMC, fluorescence quenching, wettability and contact angle measurements were elaborately investigated. The morphology of the aggregates were analyzed by SEM and OPM techniques. Further, we demonstrated the antimicrobial and hemolytic activity for the cationic amphiphiles. DCaC had potent antimicrobial activity and showed no toxicity on human RBCs indicating that DCaC could be used in biomedical applications, in addition to their industrial and laboratory applications such as detergency, surface cleaning, and disinfection agent

    Sodium Cholate-Templated Blue Light-Emitting Ag Subnanoclusters: <i>In Vivo</i> Toxicity and Imaging in Zebrafish Embryos

    No full text
    We report a novel green chemical approach for the synthesis of blue light-emitting and water-soluble Ag subnanoclusters, using sodium cholate (NaC) as a template at a concentration higher than the critical micelle concentration (CMC) at room temperature. However, under photochemical irradiation, small anisotropic and spherically shaped Ag nanoparticles (3–11 nm) were obtained upon changing the concentration of NaC from below to above the CMC. The matrix-assisted laser desorption ionization time-of-flight and electrospray ionization mass spectra showed that the cluster sample was composed of Ag<sub>4</sub> and Ag<sub>6</sub>. The optical properties of the clusters were studied by UV–visible and luminescence spectroscopy. The lifetime of the synthesized fluorescent Ag nanoclusters (AgNCs) was measured using a time-correlated single-photon counting technique. High-resolution transmission electron microscopy was used to assess the size of clusters and nanoparticles. A protocol for transferring nanoclusters to organic solvents is also described. Toxicity and bioimaging studies of NaC templated AgNCs were conducted using developmental stage zebrafish embryos. From the survival and hatching experiment, no significant toxic effect was observed at AgNC concentrations of up to 200 μL/mL, and the NC-stained embryos exhibited blue fluorescence with high intensity for a long period of time, which shows that AgNCs are more stable in living system

    Oligonucleotide-Based Fluorescent Probe for Sensing of Cyclic Diadenylate Monophosphate in Bacteria and Diadenosine Polyphosphates in Human Tears

    No full text
    Cyclic diadenylate monophosphate (c-di-AMP) and P<sup>1</sup>,P<sup>5</sup>-diadenosine-5′ pentaphosphate (Ap5A) have been determined to play important roles in bacterial physiological processes and human metabolism, respectively. However, few, if any, methods have been developed that use fluorescent sensors to sense c-di-AMP and Ap5A in the real world. To address this challenge, this study presents a fast, convenient, selective, and sensitive assay for quantifying c-di-AMP and Ap5A fluorescence based on the competitive binding of diadenosine nucleotides and a polyadenosine probe to coralyne. The designed probe consists of a 20-mer adenosine base (A<sub>20</sub>), a fluorophore unit at the 5′-end, and a quencher unit at the 3′-end. Through A<sub>2</sub>–coralyne–A<sub>2</sub> coordination, coralyne causes a change in the conformation of A<sub>20</sub> from that of a random coil to a folded structure, thus enabling the fluorophore to be close to the quencher. As a result, fluorescence quenching occurs between the two organic dyes. When the A<sub>20</sub>·coralyne probe encounters the diadenosine nucleotide, the resulting complex of coralyne and diadenosine nucleotides forces the removal of coralyne from the probe. Such a conformational change in the probe leads to the restoration of fluorescence. Within a short analysis time of 1 min, the proposed probe provides high selectivity toward c-di-AMP and Ap5A over other common nucleotides. The probe’s detection limit at a signal-to-noise ratio of 3 for both c-di-AMP and Ap5A were estimated to be 0.4 and 4 μM, respectively. The practicality of the proposed probe was demonstrated by quantifying c-di-AMP in bacteria lysates and Ap5A in human tears
    corecore