3 research outputs found

    Model Hamiltonian Analysis of Singlet Fission from First Principles

    No full text
    We present an approach to accurately construct the few-state model Hamiltonians for singlet fission processes on the basis of an ab initio electronic structure method tailored to dimer wave functions, called an active space decomposition strategy. In this method, the electronic structure of molecular dimers is expressed in terms of a linear combination of products of monomer states. We apply this method to tetracene and pentacene, using monomer wave functions computed by the restricted active space (RAS) method. Near-exact wave functions are computed for π-electrons of dimers that contain up to 7 × 10<sup>12</sup> electronic configurations. Our product ansatz preserves the diabatic picture of the minimal dimer model, allowing us to accurately identify model Hamiltonians. The wave functions obtained from the model Hamiltonians account for more than 99% of the total wave functions. The resulting model Hamiltonians are shown to be converged with respect to all the parameters in the model, and corroborate previously reported coupling strengths

    Scalable Synthesis and Characterization of Multilayer γ‑Graphyne, New Carbon Crystals with a Small Direct Band Gap

    No full text
    γ-Graphyne is the most symmetric sp2/sp1 allotrope of carbon, which can be viewed as graphene uniformly expanded through the insertion of two-carbon acetylenic units between all the aromatic rings. To date, synthesis of bulk γ-graphyne has remained a challenge. We here report the synthesis of multilayer γ-graphyne through crystallization-assisted irreversible cross-coupling polymerization. A comprehensive characterization of this new carbon phase is described, including synchrotron powder X-ray diffraction, electron diffraction, lateral force microscopy, Raman spectroscopy, infrared spectroscopy, and cyclic voltammetry. Experiments indicate that γ-graphyne is a 0.48 eV band gap semiconductor, with a hexagonal a-axis spacing of 6.88 Å and an interlayer spacing of 3.48 Å, which is consistent with theoretical predictions. The observed crystal structure has an aperiodic sheet stacking. The material is thermally stable up to 240 °C but undergoes transformation at higher temperatures. While conventional 2D polymerization and reticular chemistry rely on error correction through reversibility, we demonstrate that a periodic covalent lattice can be synthesized under purely kinetic control. The reported methodology is scalable and inspires extension to other allotropes of the graphyne family

    Scalable Synthesis and Characterization of Multilayer γ‑Graphyne, New Carbon Crystals with a Small Direct Band Gap

    No full text
    γ-Graphyne is the most symmetric sp2/sp1 allotrope of carbon, which can be viewed as graphene uniformly expanded through the insertion of two-carbon acetylenic units between all the aromatic rings. To date, synthesis of bulk γ-graphyne has remained a challenge. We here report the synthesis of multilayer γ-graphyne through crystallization-assisted irreversible cross-coupling polymerization. A comprehensive characterization of this new carbon phase is described, including synchrotron powder X-ray diffraction, electron diffraction, lateral force microscopy, Raman spectroscopy, infrared spectroscopy, and cyclic voltammetry. Experiments indicate that γ-graphyne is a 0.48 eV band gap semiconductor, with a hexagonal a-axis spacing of 6.88 Å and an interlayer spacing of 3.48 Å, which is consistent with theoretical predictions. The observed crystal structure has an aperiodic sheet stacking. The material is thermally stable up to 240 °C but undergoes transformation at higher temperatures. While conventional 2D polymerization and reticular chemistry rely on error correction through reversibility, we demonstrate that a periodic covalent lattice can be synthesized under purely kinetic control. The reported methodology is scalable and inspires extension to other allotropes of the graphyne family
    corecore