5 research outputs found

    Extracellular matrix-inspired biomaterials for wound healing

    No full text
    Diabetic foot ulcers (DFU) are a debilitating and life-threatening complication of Diabetes Mellitus. Ulceration develops from a combination of associated diabetic complications, including neuropathy, circulatory dysfunction, and repetitive trauma, and they affect approximately 19–34% of patients as a result. The severity and chronic nature of diabetic foot ulcers stems from the disruption to normal wound healing, as a result of the molecular mechanisms which underly diabetic pathophysiology. The current standard-of-care is clinically insufficient to promote healing for many DFU patients, resulting in a high frequency of recurrence and limb amputations. Biomaterial dressings, and in particular those derived from the extracellular matrix (ECM), have emerged as a promising approach for the treatment of DFU. By providing a template for cell infiltration and skin regeneration, ECM-derived biomaterials offer great hope as a treatment for DFU. A range of approaches exist for the development of ECM-derived biomaterials, including the use of purified ECM components, decellularisation and processing of donor/ animal tissues, or the use of in vitro-deposited ECM. This review discusses the development and assessment of ECM-derived biomaterials for the treatment of chronic wounds, as well as the mechanisms of action through which ECM-derived biomaterials stimulate wound healing

    Thou shall not heal: overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment

    No full text
    Diabetic foot ulcers (DFUs) are a devastating complication for diabetic patients that have debilitating effects and can ultimately lead to limb amputation. Healthy wounds progress through the phases of healing leading to tissue regeneration and restoration of the barrier function of the skin. In contrast, in diabetic patients dysregulation of these phases leads to chronic, non-healing wounds. In particular, unresolved inflammation in the DFU microenvironment has been identified as a key facet of chronic wounds in hyperglyceamic patients, as DFUs fail to progress beyond the inflammatory phase and towards resolution. Thus, control over and modulation of the inflammatory response is a promising therapeutic avenue for DFU treatment. This review discusses the current state-of-the art regarding control of the inflammatory response in the DFU microenvironment, with a specific focus on the development of biomaterials-based delivery strategies and their cargos to direct tissue regeneration in the DFU microenvironment. </p

    Thou shall not heal: overcoming the non-healing behaviour of diabetic foot ulcers by engineering the inflammatory microenvironment

    No full text
    Diabetic foot ulcers (DFUs) are a devastating complication for diabetic patients that have debilitating effects and can ultimately lead to limb amputation. Healthy wounds progress through the phases of healing leading to tissue regeneration and restoration of the barrier function of the skin. In contrast, in diabetic patients dysregulation of these phases leads to chronic, non-healing wounds. In particular, unresolved inflammation in the DFU microenvironment has been identified as a key facet of chronic wounds in hyperglyceamic patients, as DFUs fail to progress beyond the inflammatory phase and towards resolution. Thus, control over and modulation of the inflammatory response is a promising therapeutic avenue for DFU treatment. This review discusses the current state-of-the art regarding control of the inflammatory response in the DFU microenvironment, with a specific focus on the development of biomaterials-based delivery strategies and their cargos to direct tissue regeneration in the DFU microenvironment. </p

    A biomimetic, bilayered antimicrobial collagen-based scaffold for enhanced healing of complex wound conditions

    No full text
    Chronic, nonhealing wounds in the form of diabetic foot ulcers (DFUs) are a major complication for diabetic patients. The inability of a DFU to heal appropriately leads to an open wound with a high risk of infection. Current standards of care fail to fully address either the underlying defective wound repair mechanism or the risk of microbial infection. Thus, it is clear that novel approaches are needed. One such approach is the use of multifunctional biomaterials as platforms to direct and promote wound healing. In this study, a biomimetic, bilayered antimicrobial collagen-based scaffold was developed to deal with the etiology of DFUs. An epidermal, antimicrobial collagen/chitosan film for the prevention of wound infection was combined with a dermal collagen-glycosaminoglycan scaffold, which serves to support angiogenesis in the wound environment and ultimately accelerate wound healing. Biophysical and biological characterization identified an 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide cross-linked bilayered scaffold to have the highest structural stability with similar mechanical properties to products on the market, exhibiting a similar structure to native skin, successfully inhibiting the growth and infiltration of Staphylococcus aureus and supporting the proliferation of epidermal cells on its surface. This bilayered scaffold also demonstrated the ability to support the proliferation of key cell types involved in vascularization, namely, induced pluripotent stem cell derived endothelial cells and supporting stromal cells, with early signs of organization of these cells into vascular structures, showing great promise for the promotion of angiogenesis. Taken together, the results indicate that the bilayered scaffold is an excellent candidate for enhancement of diabetic wound healing by preventing wound infection and supporting angiogenesis.</p

    A biomimetic, bilayered antimicrobial collagen-based scaffold for enhanced healing of complex wound conditions

    No full text
    Chronic, nonhealing wounds in the form of diabetic foot ulcers (DFUs) are a major complication for diabetic patients. The inability of a DFU to heal appropriately leads to an open wound with a high risk of infection. Current standards of care fail to fully address either the underlying defective wound repair mechanism or the risk of microbial infection. Thus, it is clear that novel approaches are needed. One such approach is the use of multifunctional biomaterials as platforms to direct and promote wound healing. In this study, a biomimetic, bilayered antimicrobial collagen-based scaffold was developed to deal with the etiology of DFUs. An epidermal, antimicrobial collagen/chitosan film for the prevention of wound infection was combined with a dermal collagen-glycosaminoglycan scaffold, which serves to support angiogenesis in the wound environment and ultimately accelerate wound healing. Biophysical and biological characterization identified an 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide cross-linked bilayered scaffold to have the highest structural stability with similar mechanical properties to products on the market, exhibiting a similar structure to native skin, successfully inhibiting the growth and infiltration of Staphylococcus aureus and supporting the proliferation of epidermal cells on its surface. This bilayered scaffold also demonstrated the ability to support the proliferation of key cell types involved in vascularization, namely, induced pluripotent stem cell derived endothelial cells and supporting stromal cells, with early signs of organization of these cells into vascular structures, showing great promise for the promotion of angiogenesis. Taken together, the results indicate that the bilayered scaffold is an excellent candidate for enhancement of diabetic wound healing by preventing wound infection and supporting angiogenesis. </p
    corecore